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Preface

Content-oriented XML retrieval has been receiving increasing interest due to
the widespread use of eXtensible Markup Language (XML), which is becoming
a standard document format on the Web, in digital libraries, and publishing. By
exploiting the enriched source of syntactic and semantic information that XML
markup provides, XML information retrieval (IR) systems aim to implement
a more focused retrieval strategy and return document components, so-called
XML elements – instead of complete documents – in response to a user query.
This focused retrieval approach is of particular benefit for collections containing
long documents or documents covering a wide variety of topics (e.g., books, user
manuals, legal documents, etc.), where users’ effort to locate relevant content
can be reduced by directing them to the most relevant parts of the documents.
Implementing this, more focused, retrieval paradigm means that an XML IR
system needs not only to find relevant information in the XML documents, but
it also has to determine the appropriate level of granularity to be returned to
the user. In addition, the relevance of a retrieved component may be dependent
on meeting both content and structural query conditions.

Evaluating the effectiveness of XML retrieval systems, hence, requires a test
collection where relevance assessments are provided according to a relevance cri-
terion, which takes into account the imposed structural aspects. In 2002, the
INitiative for the Evaluation of XML Retrieval (INEX) started to address these
issues. The aim of the INEX initiative is to establish an infrastructure and pro-
vide means, in the form of a large XML test collection and appropriate scoring
methods, for the evaluation of content-oriented XML retrieval systems. Now, in
its fourth year, INEX is an established evaluation forum for XML IR, with over
50 participating organizations worldwide.

2005 was an exciting year for INEX, and brought with it many changes
and new aspects to the evaluation. Several new tracks and tasks, a new rele-
vance assessment procedure and new evaluation measures were introduced. In
total, seven research tracks were included in INEX 2005, which studied differ-
ent aspects of XML information access: Ad-hoc retrieval, Interactive, Relevance
Feedback, Heterogeneous, Natural Language Processing, and two new tracks for
2005, Multimedia and Document Mining.

The INEX 2005 workshop, held at Schloss Dagstuhl (Germany), November
28–30, 2005, brought together researchers in the field of XML retrieval, who
participated in the INEX 2005 evaluation campaign. Participants were able to
present and discuss their approach to XML retrieval and evaluation. These pro-
ceedings contain revised papers describing work carried out during INEX 2005
in the various tracks.

INEX is funded by the DELOS Network of Excellence on Digital Libraries,
to which we are very thankful. We would also like to thank the IEEE Computer
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Society and the Lonely Planet for providing us the data sets, which were used to
build two of the XML collections used in INEX 2005. We gratefully thank the
organizers of the various tasks and tracks who did a superb job, their work is
greatly appreciated. Finally, special thanks go to the participating organizations
and people for their contributions.

March 2005 Norbert Fuhr
Mounia Lalmas

Saadia Malik
Gabriella Kazai
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Overview of INEX 2005

Saadia Malik1, Gabriella Kazai2, Mounia Lalmas2, and Norbert Fuhr1

1 Information Systems, University of Duisburg-Essen, Duisburg, Germany
{malik, fuhr}@is.informatik.uni-duisburg.de

2 Department of Computer Science, Queen Mary, University of London, London, UK
{gabs, mounia}@dcs.qmul.ac.uk

Abstract. Since 2002, INEX has been working towards the goal of establishing
an infrastructure, in the form of a large XML test collection and appropriate scor-
ing methods, for the evaluation of content-oriented XML retrieval systems. This
paper provides an overview of the work carried out as part of INEX 2005.

1 Introduction

The INitiative for the Evaluation of XML retrieval (INEX) has, since 2002, been work-
ing towards the goal of establishing an infrastructure, in the form of a large XML test
collection and appropriate scoring methods, for the evaluation of content-oriented XML
retrieval systems. As a result of a collaborative effort, during the course of 2005, the
INEX test collection has been further extended with an additional 4 712 new scientific
articles from publications of the IEEE Computer Society, 87 new topics, and relevance
judgements for 63 of these topics. Using the constructed test collection and the devel-
oped set of measures, the retrieval effectiveness of the participating organisations were
evaluated and their results compared.

2005 has brought with it a lot of changes and new aspects to the evaluation. Sev-
eral new tracks and tasks, a new relevance assessment procedure and new evaluation
measures [2] were introduced. This paper presents an overview of these aspects and
describes the work carried out as part of INEX 2005.

Section 2 gives a brief summary of this year’s participants. Section 3 provides an
overview of the expanded test collection. Section 4 outlines the retrieval tasks in the
main ad-hoc track. Section 5 briefly reports on the submission runs for the ad hoc
retrieval tasks. Section 6 describes the relevance assessment phase. The different mea-
sures used to evaluate retrieval performance are described in a separate paper [2]. Sec-
tion 7 provides a short description of the tracks of INEX 2005. The paper wraps up with
conclusions and outlook to INEX 2006.

2 Participating Organizations

In response to the call for participation, issued in March 2005, 35 old and 12 new
organizations registered. However throughout the year a number of groups dropped out
due to resource requirements, while 11 further groups joined the initiative. The final 41
active groups along with their participation details are summarised in Table 1.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. List of active INEX 2005 participants

Submitted Assessed SubmittedOrganisations
topics topics runs

Max-Planck-Institut für Informatik 1 4 10
Royal School of LIS 5 2 0
University of California, Berkeley 2 2 20
University of Granada 4 2 0
University of Amsterdam 4 2 18
University of Otago 6 2 0
Queen Mary, University of London 0 2 0
University of Toronto 5 2 0
Utrecht University 6 2 16
City University London and Microsoft Research Cambridge 5 2 6
University of Kaiserslautern 3 2 14
IRIT 5 2 26
RMIT University 6 2 26
École Nationale Supérieure des Mines de Saint-Etienne 6 2 0
Queensland University of Technology 4 2 28
Universtity of Klagenfurt (ISYS) 0 2 3
University of Tampere 4 2 17
Carnegie Mellon University 3 2 4
University of Illinois at Urbana-Champaign 7 2 0
IBM Haifa Research Lab 6 2 26
University of Minnesota Duluth 8 2 24
Universidade Estadual de Montes Claros 4 2 8
The Hebrew University of Jeru 6 2 14
UCLA 6 2 2
University of Udine 0 2 0
VALORIA Lab, University of South-Brittany 0 2 0
Nagoya University 6 2 0
Laboratoire d’Informatique de Paris 6 (LIP6) 4 2 17
University of Waterloo 2 2 7
Kyungpook National University 0 2 9
University of Helsinki 0 2 7
Cirquid Project (CWI and University of Twente) 6 2 16
Universität Duisburg-Essen 1 1 0
Oslo University College 2 2 5
Universidad de Chile 0 1 0
Organizations participating only in the XML document mining track
INRIA
Charles de Gaulle University
University of Wolongong
Organization participating only in the interactive track
Rutgers University
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3 The Test Collection

Test collections, as traditionally used in the information retrieval (IR), consist of three
parts: a set of documents, a set of information needs called topics and a set of relevance
assessments listing the relevant documents for each topic. Although a test collection for
XML IR consists of the same three parts, each component is rather different from its
traditional IR counterpart.

Table 2. New additions to the IEEE collection in INEX 2005

id Publication title Year Size No. of
(Mb) articles

an IEEE Annals of the History of Computing 2002-2004 5.1 118
cg IEEE Computer Graphics and Applications 2002-2004 7.6 220
co Computer 2002-2004 14.8 664
cs Computing in Science & Engineering 2002-2004 6.4 219
ds IEEE Distributed Systems Online 2004 0.6 39
dt IEEE Design & Test of Computers 2002-2004 6.1 263
ex IEEE Intelligent Systems 2002-2004 8.2 240
ic IEEE Internet Computing 2002-2004 7.0 264
it IT Professional 2002-2004 3.4 142
mi IEEE Micro 2002-2004 5.2 195
mu IEEE Multimedia 2002-2004 4.6 161
pc IEEE Pervasive Computing 2002-2004 5.1 160
so IEEE Software 2002-2004 7.6 341
sp IEEE Security & Privacy 2003-2004 4.4 179
tb IEEE Transactions On Computational Biology & Bioinformatics 2004 0.8 12
tc IEEE Transactions on Computers 2002-2004 27.5 319
td IEEE Transactions on Parallel & Distributed Systems 2002-2004 23.2 235
tg IEEE Transactions on Visualization and Computer Graphics 2002-2004 9.2 109
tk IEEE Transactions on Knowledge and Data Engineering 2002-2004 26.9 255
tm IEEE Transactions On Mobile Computing 2002-2004 6.5 79
tp IEEE Transactions on Pattern Analysis and Machine Intelligence 2002-2004 28.9 350
tq IEEE Transactions On Dependable and Secure Computing 2002-2004 1.1 12
ts IEEE Transactions of Software Engineering 2002-2004 18.4 192

Total new XML content added in INEX 2005 (incl. volume files): 228.6 4 768

In IR test collections, documents are considered units of unstructured text, queries
are generally treated as bags of terms or phrases, and relevance assessments provide
judgments whether a document as a whole is relevant to a query or not. XML doc-
uments, on the other hand, organize their content into smaller, nested structural ele-
ments. Each of these elements in the document’s hierarchy, along with the document
itself (the root of the hierarchy), represents a retrievable unit. In addition, with the use
of XML query languages, users of an XML IR system can express their information
need as a combination of content and structural conditions, e.g. users can restrict their
search to specific structural elements within the collection. Consequently the relevance
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assessments for an XML collection must also consider the structural nature of the doc-
uments and provide assessments at different levels of the document hierarchy. These
three components of the INEX test collection are described in the next sections.

3.1 Documents

This year the collection of documents that forms the INEX ad-hoc test collection has
been extended with further publications donated by the IEEE Computer Society. The
additional new resources are summarised in table 2. A total of 4 712 new articles (ex-
cluding the 56 new volume.xml files) from the period of 2002-2004 have been added to
the previous collection of 12 107 articles, giving a total of 16 819 articles. This meant
that the INEX ad-hoc test collection grew by 228Mb in size to a total of 764Mb.

3.2 Topics

As in previous years, INEX 2005 distinguished two basic types of topics: Content-Only
(CO) and Content-And-Structure (CAS) topics. These topic types reflect two types of
users with varying levels of knowledge about the structure of the searched collection.
The first type simulates ignorant users, who either do not have any knowledge of the
document structure or who choose not to use such knowledge. This profile is likely to
fit most users searching XML digital libraries. The latter type of user aims to make use
of any insight about the document structure that they may possess. They may then use
this knowledge as a precision enhancing device in trying to make the information need
more concrete. This user type is more likely to fit librarians.

Building on these basic types, INEX 2005, defined and investigated various exten-
sions and interpretations of topic types.

Content-Only + Structure (CO+S). In an effort to investigate the usefulness of struc-
tural hints, the Content-Only (CO) topics, as used in previous years of INEX, were
extended into so-called Content-Only + Structure (CO+S) topics. The aim was that the
use of these topics enabled the comparison of a system’s performance across two re-
trieval scenarios (on the same topic): when structural hints are taken into account (+S)
and when these hints are ignored (CO).

As in previous years, queries with content-only conditions (CO queries) were de-
fined as requests that ignore the document structure and contain only content related
conditions, e.g. only specify what an element should be about without specifying what
that component is. The topic format of CO queries includes a topic title, description and
narrative.

The extended CO+S topics in INEX 2005 included an optional field called CAS
title, which is a representation of the same information need but including additional
knowledge in the form of structural hints (see the discussion on Topic format in this
section).

Content-And-Structure (CAS). The aim of the Content-And-Structure (CAS) topics
this year was to support investigations on the different possible interpretations of struc-
tural constraint within a query, i.e. strict or vague, and the effect of this interpretation
on retrieval effectiveness.
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<inex_topic topic_id="231" query_type="CO+S" ct_no="98" >
<title>markov chains in graph related algorithms</title>
<castitle>

//article//sec[about(.,+"markov chains" +algorithm +graphs)]
</castitle>
<description>Retrieve information about the use of markov chains

in graph theory and in graphs-related algorithms.
</description>
<narrative>I have just finished my MSc. in mathematics, in the field

of stochastic processes. My research was in a subject related to
Markov chains. My aim is to find possible implementations of my
knowledge in current research. I’m mainly interested in
applications in graph theory, that is, algorithms related to
graphs that use the theory of markov chains. I’m interested in
at least a short specification of the nature of implementation
(e.g. what is the exact theory used, and to which purpose),
hence the relevant elements should be sections, paragraphs or
even abstracts of documents, but in any case, should be part of
the content of the document (as opposed to, say, vt, or bib).

</narrative>
</inex_topic>

Fig. 1. A CO+S topic from the INEX 2005 test collection

The actual definition of CAS topics have not changed from previous years: CAS
topics are topic statements that contain explicit references to the XML structure, and
explicitly specify the contexts of the user’s interest (e.g. target elements) and/or the
contexts of certain search concepts (e.g. containment conditions). More precisely, a
CAS query contains two kinds of structural constraints: where to look (i.e. the support
elements), and what to return (i.e. the target elements).

What was new in INEX 2005, was the explicit nature in which structural constraints
were to be interpreted by a search system. Each structural constraint could be con-
sidered as a strict (must be matched exactly) or vague (simply as hints) criterion. The
former closer reflects the database-oriented view, where only records that exactly match
the specified structure should be returned to the user. The latter is closer to the IR view,
where users’ information need is assumed to be inherently uncertain. Four combina-
tions of vague and strict interpretations of the structural constraints are then possible,
depending on how the target elements and/or the containment conditions are treated:

– VVCAS: where the structural constraints in both the target elements and the support
elements are interpreted as vague.

– SVCAS: where the structural constraints in the target elements are interpreted as
strict and the structural constraints in the support elements are interpreted as vague.

– VSCAS: where the structural constraints in the target elements are interpreted as
vague and the structural constraints in the support elements are interpreted as strict.

– SSCAS: where the structural constraints in both the target elements and the support
elements are interpreted as strict.
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<inex_topic topic_id="269" query_type="CAS" ct_no="117" >
<title> </title>
<castitle>

//article[about(.,interconnected networks)]//p[about(.,
Crossbar networks)]

</castitle>
<description>We are looking for paragraphs that talk about

Crossbar networks from articles that talk about interconnected
networks.

</description>
<narrative>With networking between processors gaining significance,

interconnected networks has become an important concept.
Crossbar network is one of the interconnected networks. We are
looking for information on what crossbar networks exactly are,
how they operate and why they are used to connect processors.
Any article discussing interconnected networks in the context
of crossbar networks is considered to be relevant. Articles
talking about interconnected networks such as Omega networks
are not considered to be relevant. This information would be
used to prepare a presentation for a lecture on the topic, and
hence information on crossbar networks makes an element relevant.

</narrative>
</inex_topic>

Fig. 2. A CAS topic from the INEX 2005 test collection

Topic format. Both CO+S and CAS topics are made up of several parts, each repre-
senting the same information need, but for different purposes.

– Title: A short explanation of the information need. It serves as a summary of the
content of the user’s information need. A word in the title can have an optional +
or − prefix, where + is used to emphasize an important concept, and − is used to
denote an unwanted concept.

– CAS Title (castitle): A short explanation of the information need, specifying any
structural requirements. The CAS title is optional in CO+S topics, but mandatory
in CAS topics. Similarly to topic title, a word in the CAS title can have a + or −
prefix. CAS titles are expressed in the query language of NEXI [5].

– Parent: Only used for CAS topics. Each CAS topic containing more than one
about function was submitted with a set of sub-topics describing the informa-
tion need of each single about clause. In order to match the sub-topics with the
topic the parent had to be identified in the sub-topic.

– Description: a one or two sentence natural language definition of the information
need.

– Narrative: a detailed explanation of the information need and a description of what
makes a document/component relevant or not. The narrative was there to explain
not only what information is being sought for, but also the context and motivation
of the information need, i.e., why the information is being sought and what work
task it might help to solve. The latter was required for the interactive track (see
Section 7.1).
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The title and the description had to be interchangeable. This was a requirement of the
natural language processing track (see Section 7.4). The DTD of the topics is shown in
Figure 3.

<!ELEMENT inex_topic
(title,castitle?,parent?,description,
narrative)>
<!ATTLIST inex_topic
topic_id CDATA #REQUIRED
query_type CDATA #REQUIRED
ct_no CDATA #REQUIRED

>
<!ELEMENT title (#PCDATA)>
<!ELEMENT castitle (#PCDATA)>
<!ELEMENT parent (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT narrative (#PCDATA)>

Fig. 3. Topic DTD

Attributes of a topic are: topic_id (which in INEX 2005 ranges from 202 to 288),
query_type (with possible values of “CAS” or “CO+S”) and ct_no, which refers to the
candidate topic number (ranging from 1 to 1451). Examples of both types of topics are
given in Figures 1 and 2.

Topic creation. Topics were created by the participating groups. Each group was asked
to submit up to 6 candidate topics (3 CO+S and 3 CAS). A detailed guideline was
provided to the participants for the topic creation [7].

Four steps were identified for this process: 1) Initial Topic Statement creation, 2)
Collection Exploration, 3) Topic Refinement, and 4) Topic Selection. The first three
steps were performed by the participants themselves while the selection of topics was
decided by the organisers.

During the first step, participants created their initial topic statement. These were
treated as a user’s description of his/her information need and were formed without
regard to system capabilities or collection peculiarities to avoid artificial or collection
biased queries. During the collection exploration phase, participants estimated the num-
ber of relevant documents/components to their candidate topics. The HyREX retrieval
system [1] was made available to participants to help with this task. Participants were
asked to judge the top 25 retrieved results and record for each found relevant docu-
ment/component its file name and its XPath. Those topics having at least 2 relevant
documents/components but less than 20 documents/components were to be submitted
as candidate topics. In the topic refinement stage, the topics were finalised ensuring
coherency and that each part of the topic could be used in stand-alone fashion.

1 Note that, due to the withdrawal of some topics, this is not a continuous range.
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Table 3. Statistics on CAS and CO+S topics on the INEX 2005 test collection

CAS CO+S
Number of topics 40 47
Average length of title (in words) - 3.8
Boolean operators (and/or) in title - 44
Prefix operators (+/-) in title - 7
Phrases in title - 20
Boolean operators (and/or) in castitle 5 13
Prefix operators (+/-) in castitle 2 9
Phrases in castitle 52 17
Average length of topic description (in words) 13 17
Average length of narrative (in words) 73 91

After the completion of the first three stages, topics were submitted to INEX. A total
of 139 candidate topics were received, of which 87 topics (40 CO+S and 47 CAS) were
selected to form the final set of topics added to the test collection. Topic selection was
based on a combination of criteria such as 1) balancing the number of topics across all
participants, 2) eliminating topics that were considered too ambiguous or too difficult
to judge, 3) uniqueness of topics, and 4) considering their suitability to the different
tracks. Table 3 shows some statistics on the final set of INEX 2005 topics.

4 Retrieval Tasks

The main retrieval task at INEX 2005 was defined as the ad-hoc retrieval of XML doc-
uments [8]. In information retrieval literature, ad-hoc retrieval is described as a simula-
tion of how a library might be used. It involves the searching of a static set of documents
using a new set of topics. While the principle is the same, the difference for INEX is that
the library consists of XML documents, the queries may contain both content and struc-
tural conditions and, in response to a query, arbitrary XML elements may be retrieved
from the library.

Unlike previous years, INEX 2005 distinguished several retrieval strategies, each
based on different assumptions regarding a search system’s output. These strategies
have been explicitly investigated within the ad-hoc sub-tasks that build on the use of CO
and CO+S queries. For tasks based on the use of CAS queries, systems’ were assumed
to follow the Thorough retrieval strategy only.

4.1 Ad-Hoc Sub-tasks Based on CO Queries

CO.Focussed: This strategy was intended for approaches concerned with the focussed
retrieval of XML elements, i.e. aiming at targeting the appropriate level of granularity
of relevant content that should be returned to the user for a given topic. An explicit
assumption here was that a retrieval run should not contain any overlapping elements.
The aim was for systems to find the most exhaustive and specific element on a path
within a given document containing relevant information and return to the user only
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this most appropriate unit of retrieval. In the case where an XML retrieval system has
estimated a parent and one if its child elements to be equally exhaustive and specific
for a given topic, the parent element were to be returned. In addition, when a parent has
been estimated as more exhaustive than one of its child elements, but the child element
has been estimated as more specific than its parent, then the child element was to be
selected. In this way, preference for specificity over exhaustivity was given.

CO.Thorough: This strategy was intended for XML retrieval approaches that do not
deal with the problem of overlap when generating their output list for the evaluation,
but consider this an interface and results presentation issue, which is to be resolved
at a later stage, outside the scope of the evaluation. The aim here was for systems to
find all relevant elements within the collection. Due to the nature of relevance in XML
retrieval (e.g. if a child element is relevant, so will be its parent, although to a greater
or lesser extent), an XML retrieval system that has estimated an element to be relevant
may decide to return all its ancestor elements. This means that runs for this task may
contain a large number of overlapping elements. It is however a challenge to rank these
elements appropriately, as systems that rank highly exhaustive and specific elements
before less exhaustive and specific ones were to obtain better effectiveness.

CO.FetchBrowse: This strategy was intended for XML retrieval approaches that are
based on a mixture of document retrieval and element retrieval strategies. The aim of
the fetch and browse retrieval strategy was to first identify relevant articles (the fetching
phase), and then to identify the most exhaustive and specific elements within the fetched
articles (the browsing phase). In the fetching phase, articles had to be ranked according
to how exhaustive and specific they were (i.e. the most exhaustive and specific articles
were to be ranked first). In the browsing phase, ranking had to be done according to
how exhaustive and specific the relevant elements in the article were, compared to other
elements in the same article.

4.2 Ad-Hoc Sub-tasks Based on CO+S Queries

Upon discovering that a CO query returned many irrelevant hits, a user may decide to
add structural hints in order to improve precision. These structural hints were expressed
in the <castitle> part of the CO+S topics, which was then used as the query for
the CO+S sub-tasks. The aim of the CO+S sub-tasks was to specifically investigate the
usefulness of the structural hints. As for the CO sub-tasks, three retrieval strategies were
defined: COS.Focussed, COS.Thorough and COS.FetchBrowse.

4.3 Ad-Hoc Sub-tasks Based on CAS Queries

As described in section 3.2, different interpretations of CAS topics on the basis of target
and support elements were possible, resulting in the sub-tasks of VVCAS, SVCAS,
VSCAS and SSCAS. In these sub-tasks, the aim was to retrieve the most exhaustive
and specific elements with respect to the topic of request, where overlap among retrieval
results was allowed (Thorough strategy). An analysis of the outcome of the CAS sub-
tasks can be found in a separate paper [4].
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5 Submissions

During the retrieval runs, participating organisations evaluated the 87 INEX 2005 topics
(40 CO+S and 47 CAS queries) against the IEEE Computer Society document collec-
tion and produced a list (or set) of document components (XML elements) as their
retrieval results for each topic. The top 1500 components in a topic’s retrieval results
were then submitted to INEX. Table 4 summarises the submissions to the different ad-
hoc tasks. For each topic, around 500 articles along with their components were pooled
from all the submissions in round robin way for relevance assessment. Table 5 shows
the pooling effect on the CAS and CO+S topics.

Table 4. Number of runs submitted to the different ad-hoc tasks

CO.Focussed 44 COS.Focussed 27
CO.Thorough 55 COS.Thorough 33
CO.FetchBrowse 42 COS.FetchBrowse 25
VVCAS 28 SSCAS 25
VSCAS 23 SVCAS 23

Table 5. Pooling effect for CAS and CO+S topics

CAS topics CO+S topics
Number of articles submitted 176 735 236 060
Number of articles in pools 23 250 20 135
Number of components submitted 812 207 1 337 214
Number of components in pools 92 905 80 019

6 Assessments

6.1 Relevance Dimensions and Scales

Relevance assessments were given according to two relevance dimensions [9]:

– Exhaustivity (e), which describes the extent to which the document component
discusses the topic of request.

– Specificity (s), which describes the extent to which the document component fo-
cuses on the topic of request.

While the above definition of the relevance dimensions has remained unchanged since
2003, the scale that these dimensions were measured on has been revised in INEX 2005.
The scale for exhaustivity was changed to 3 + 1 levels: highly exhaustive
(e = 2), somewhat exhaustive (e = 1), not exhaustive (e = 0) and “too small” (e =?).
The latter category of “too small” was introduced with the aim to allow assessors to
label document components, which although contained relevant information were too
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small to sensibly reason about their level of exhaustivity2. Specificity was measured
automatically on a continuous scale with values in [0, 1], where s = 1 represents a fully
specific component (i.e. contains only relevant information). Values of specificity were
derived on the basis of what ratio of a document component has been highlighted by
the assessor (see section 6.2).

We denote the relevance degree of an assessed component, given by the combined
values of exhaustivity and specificity, as (e, s), where e ∈ {?, 0, 1, 2} and s ∈ [0, 1]. For
example, (2, 0.72) denotes a highly exhaustive component, 72% of which is relevant
content.

6.2 Relevance Assessments Procedure

A relevance assessment guideline explaining the relevance dimensions and how and
what to assess was distributed to the participants [9]. This guide also contained the
manual to the online assessment tool, developed by Benjamin Piwowarski. The tool is
referred to as X-RAI (XML Retrieval Assessment Interface - see Figures 4 and 5).

Fig. 4. X-RAI in assessment mode Fig. 5. X-RAI Article view

In order to reduce assessment effort, a highlighting procedure was used in INEX
2005 leading to the following process for assessment:

– In the first pass, assessors were asked to highlight text fragments that contained
only relevant information - see Figure 5.

– In the second pass, assessors judged the exhaustivity level of any elements that had
highlighted parts.

As a result of this process, any elements that have been fully highlighted were auto-
matically labeled as fully specific (s = 1). The main advantage of this highlighting

2 The notion of “too small” has originally been employed in INEX 2002, there as a degree of
coverage. It was removed from subsequent INEX evaluations as it was showed that assessors
often labeled descendant components of target elements in CAS queries as “too small”. Its re-
introduction into the evaluation, but this time, more appropriately, as a degree of exhaustivity,
was deemed necessary in order to free assessors from the burden of having to assess very small
text fragments whose level of exhaustivity could not be sensibly decided.
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approach was that assessors now only had to judge the exhaustivity level of the ele-
ments that have highlighted parts (in the second phase). The specificity of any other
(partially highlighted) elements was calculated automatically as a function of the con-
tained relevant and irrelevant content, and more specifically, as the ratio of relevant
content to all content, measured in number of words or characters. All non-highlighted
elements were automatically assumed as not exhaustive (e = 0).

6.3 CAS Assessments

This year there were four sets of CAS judgments, one for each of the four CAS interpre-
tations - each derived from the same initial set of judgments. These are described in [4].

7 INEX 2005 Tracks

In addition to the main ad hoc track, six research tracks were included in INEX 2005,
each studying different aspects of XML information access: Interactive, Relevance
Feedback, Heterogeneous, Natural Language Processing, and two new tracks for 2005,
Multimedia and Document Mining tracks.

7.1 Interactive Track

In its second year, the Interactive Track (iTrack) focused on addressing some fundamen-
tal issues of interactive XML retrieval. In addition, the track also expanded by including
two additional tasks and by attracting more participating groups. A total of 11 research
groups and 108 test persons participated in the three different tasks that were included
in the track. Details of the track can be found in [3].

7.2 Relevance Feedback Track

The Relevance Feedback track investigated approaches for queries that also include
structural hints (rather than content-only queries as in 2004). To limit the number
of submissions, a subset of ad-hoc tasks were chosen for participants to test their
relevance feedback algorithms. These included CO.Thorough, CO+S.Thorough and
VVCAS tasks. The reported evaluation scores for each relevance feedback submission
measured the relative and absolute improvement of the relevance feedback run over
the original base run. Five groups submitted 15 runs for CO.Thorough task, 9 runs for
COS.Thorough task and 3 runs for VVCAS task.

7.3 Heterogeneous Track

The Heterogeneous track expanded by studying new collections with different DTDs
and their effect on XML IR system effectiveness. The following document collections
have been made available:

– Berkeley (Library catalog entries for CS literature): 12 800 XML items
– CompuScience (Bibliographic entries from the Computer Science database of FIZ

Karlsruhe): 250 987 XML items.
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– bibdbpub (BibTeX converted to XML by the IS group at Univ. of Duisburg-Essen):
3 465 XML items.

– dblp (Bibliographic entries from the Digital Bibliography & Library Project in
Trier): 501 101 XML items.

– hcibib (Human-Computer Interaction Resources, bibliography from www.hcibib.
org): 26 402 XML items.

– qmuldcsdpub (Publications database of QMUL Department of Computer Science):
2 024 XML items.

– ZDNet (Articles and Comments) provided by ZDNet.com to the INEX evaluation:
96 351 items (4 734 Articles and 91 617 comments on those articles). This sub-
collection was added in 2005.

7.4 Natural Language Processing Track

The Natural Language Processing track (NLPX) focused on whether it is possible to ex-
press topics in natural language, which is then to be used as basis for retrieval. For this
year, two tasks were defined NLQ2NEXI and NLQ. NLQ2NEXI required the transla-
tion of a natural language query, provided in the element of a topic, into a formal INEX
<title> query element. The NLQ task had no restrictions on the use of any NLP
techniques to interpret the queries as they appeared in the <description> element
of a topic. The objective was not only to compare between different NLP based sys-
tems, but to also compare the results obtained with natural language queries with the
results obtained with NEXI queries by any other system in the ad hoc track. During the
topic creation stage, it was ensured that the description component of the topics were
equivalent in meaning to their corresponding NEXI title, so it was possible to re-use the
same topics, relevance assessments and evaluation procedures as in the ad hoc track.
The topic descriptions were used as input to natural language processing tools, which
processed them into representations suitable for XML search engines. Three groups
submitted 12 runs for CO.Focussed task, 5 runs for COS.Thorough task, 5 runs for
COS.FetchBrowse and 8 runs for CAS tasks. The results showed that NLQ2NEXI task
performed better than the NLQ task.

7.5 Multimedia Track

The main objective of the Multimedia track was to provide a pilot evaluation platform
and forum for structured document access systems that do not only include text in the
retrieval process, but also other types of media, such as images, speech, and video. Full
details of the track can be found in [6].

7.6 Document Mining Track

The aim of the Document Mining track, run in collaboration with the PASCAL network
of Excellence3, was to develop machine learning methods for structured data mining
and to evaluate these methods for XML document mining tasks. The track in 2005
focused on classification and clustering for XML documents. Two new collections were

3 http://www.pascal-network.org/
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developed: The WIPO corpus which is composed of 75 250 XML documents, and the
MovieDB corpus (based on the Internet Movie Database) which consists of 9 463 XML
documents.

8 Conclusion and Outlook

INEX 2005 has shown that XML retrieval is a challenging field. In addition to learning
more about XML retrieval approaches, INEX 2005 has introduced several new aspects
and made several changes to the evaluation methodology:

– The document collection was extended to include now 16 819 articles of the IEEE
Computer Society’s publications, increasing the size of the collection to a total of
764Mb (containing over 10 million XML elements). A number of new document
collections were also added and used in the various tracks. For example, the mul-
timedia track conducted experiments using the Lonely Planet WorldGuide XML
collection.

– A new assessment procedure was introduced with the aim to reduce assessment
effort (both with respect to cognitive load and time required).

– A range of ad-hoc retrieval tasks were investigated with the aim to address specific
research questions, e.g. the impact of structure as precision enhancing device or the
interpretation of structural query constraints.

– In addition to the ad-hoc retrieval tasks, several retrieval strategies were studied,
each based on different assumptions regarding what users would want to obtain as
the outcome of a search.

– A new set of evaluation measures were employed with the aim to address problem-
atic issues encountered with precision-recall like metrics.

– INEX 2005 run a total of 7 tracks, each studying different aspects of XML infor-
mation access: Ad-hoc, Interactive, Relevance Feedback, Heterogeneous, Natural
Language Processing, and two new tracks for 2005, Multimedia and Document
Mining tracks.

INEX 2006 will start in March of this year. In addition to the current tracks, INEX 2006
will have two new tracks: User case studies and XML entity ranking tracks. In addition,
a new test collection will be used, based on the Wikipedia project. Statistical analysis of
the various measures employed are also currently ongoing; results of this will provide
input for selecting which of these measures to use in 2006.
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Abstract. This paper describes the official measures of retrieval effec-
tiveness employed in INEX 2005: the eXtended Cumulated Gain (XCG)
measures. In addition, results of correlation analysis are reported, exam-
ining the correlation between the employed quantisation functions and
the different measures for the INEX 2005 ad-hoc tasks.

1 Introduction

In INEX 2005, a new set of measures, the eXtended Cumulated Gain (XCG)
measures, were introduced with the aim to provide a suitable evaluation frame-
work, where the dependency among XML document components can be taken
into account. In particular, two aspects of dependency were considered: 1.) near-
misses, which are document components that are structurally related to relevant
components, such as a neighbouring paragraph or a container section, and 2.)
overlap, which regards the situation when the same text fragment is referenced
multiple times, as in the case when a paragraph and its container section are
both retrieved.

The XCG measures are an extension of the Cumulated Gain based measures
proposed in [2]. These measures were chosen as they have been developed specif-
ically for graded relevance values and with the aim to allow IR systems to be
credited according to the retrieved documents’ degree of relevance. The moti-
vation for the XCG measures was to extend the CG metrics for the problem of
content-oriented XML IR evaluation, where the dependency of XML elements is
taken into account. The extension lies partly in the way the gain value for a given
document component is calculated via the definition of so-called relevance value
(RV) functions, and partly in the definition of the ideal recall-bases. The former
allows to consider the dependency of result elements within a system’s output,
while the latter regards the dependency of elements within the test collection’s
recall-base1.

The new measures aim to overcome the limitations of inex-eval, the previous
official measure of INEX. One such issue is that inex-eval is not well-suited to
handle multiple degrees of relevance. In addition, inex-eval has no mechanisms
for both rewarding partial scores to near-misses and to handle overlap.
1 The term recall-base refers to the collection of assessments within the test collection

that forms the ground-truth for the evaluation experiments.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 16–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Definition of an Ideal Recall-Base

As described in [6], in INEX 2005 relevance assessments were given according
to two relevance dimensions: exhaustivity (e) and specificity (s). The relevance
degree of an assessed component, given by the combined values of exhaustivity
and specificity, is denoted as (e, s), where e ∈ {?, 0, 1, 2} and s ∈ [0, 1]. The value
of e =? is used to denote elements judged as ‘too small’. Within the evaluation,
e =? is equated to e = 0.

An important property of the exhaustivity dimension is its propagation effect,
reflecting that if a component is relevant to a query, then all its ascendant
elements will also be relevant. Due to this property, all nodes along a relevant
path2 are always relevant (with varying degrees of relevance), hence resulting in
a recall-base comprised of sets of overlapping elements.

In order to evaluate tasks based on the Focussed retrieval strategy3, where
overlap is not allowed, it is necessary to remove overlap from the collected as-
sessments in the recall-base. For this purpose, we define an ideal recall-base as a
subset of the full recall-base, where overlap between relevant reference elements
is removed so that the identified subset represents the set of ideal answers, i.e.
those elements that should be returned to the user.

The selection of ideal nodes into the ideal recall-base is done through the def-
inition of preference relations on the possible (e, s) pairs and a methodology for
traversing an article’s XML tree. The preference relations are given by quantisa-
tion functions, while the following methodology is adopted to traverse an XML
tree and select the ideal nodes: Given any two components on a relevant path, the
component with the higher quantised score is selected. In case two components’
scores are equal, the one higher in the tree is chosen (i.e. parent/ascendant). The
procedure is applied recursively to all overlapping pairs of components along a
relevant path until one element remains. After all relevant paths have been pro-
cessed, a final filtering is applied to eliminate any possible overlap among ideal
components, keeping from two overlapping ideal paths the shortest one.

The use of an ideal recall-base supports the evaluation viewpoint (needed for
the Focussed strategy) whereby components in the ideal recall-base should be re-
trieved, while the retrieval of near-misses could be rewarded as partial successes,
but other systems need not be penalised for not retrieving such near-misses.

The following quantisation functions are used in INEX 2005: quantstrict

(Equation 1), quantgen (Equation 2) and quantgenLifted (Equation 3). The strict
function models a user for whom only fully specific and highly exhaustive com-
ponents are considered worthy. The generalised (gen) function credits document
components according to their degree of relevance, hence allowing to model varying
levels of user satisfaction gained from not fully specific and highly exhaustive, but
still relevant components or near-misses. Both quantstrict and quantgen functions

2 A relevant path is a path in an article file’s XML tree, whose root node is the article
element and whose leaf node is a relevant component (i.e. quant(e, s) > 0) that has
no or only non-relevant descendants.

3 CO.Focussed, COS.Focussed, CO.FetchBrowse and COS.FetchBrowse.
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ignore elements assessed as ‘too small’, since by default these are treated as e = 0.
In order to consider too small elements within the evaluation, the quantgenLifted

quantisation function is introduced, which adds +1 to lift all values of exhaustiv-
ity4. The effect of this in the evaluation is that it allows the scoring of too small
elements as near-misses.

quantstrict(e, s) :
{

1 if e = 2 and s = 1,
0 otherwise. (1)

quantgen(e, s) := e · s (2)

quantgenLifted(e, s) := (e + 1) · s (3)

3 eXtended Cumulated Gain (XCG)Measures

The XCG measures are a family of evaluation measures that are an extension of
the cumulated gain (CG) based metrics of [2] and which aim to consider the depen-
dency of XML elements (e.g. overlap and near-misses) within the evaluation. The
XCG measures include the user-oriented measures of normalised extended cumu-
lated gain (nxCG) and the system-oriented effort-precision/gain-recall measures
(ep/gr).

3.1 Normalised xCG (nxCG)

We define xCG as a vector of accumulated gain. Given a ranked list of document
components where the element IDs are replaced with their relevance scores, the cu-
mulated gain at rank i, denoted as xCG[i], is computed as the sum of the relevance
scores up to that rank:

xCG[i] :=
i∑

j=1

xG[j] (4)

For each query, an ideal gain vector, xI, can be derived by filling the rank posi-
tions with the relevance scores of all documents in the recall-base (or as in the case
of the Focussed strategy, with the relevance scores of all elements in the ideal recall-
base) in decreasing order of their degree of relevance.The corresponding cumulated
ideal gain vector is referred to as xCI.

A retrieval run’s xCG vector can then be compared to this ideal ranking by plot-
ting both the actual and ideal cumulated gain functions against the rank position.
By dividing the xCG vectors of the retrieval runs by their corresponding ideal xCI
vectors, we obtain the normalised xCG (nxCG) measure:

nxCG[i] :=
xCG[i]
xCI[i]

(5)

4 Note that this is only applied to relevant elements of the recall-base, hence non-relevant
nodes remain as e = 0.
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For a given rank i, the value of nxCG[i] reflects the relative gain the user accumu-
latedup to that rank, compared to the gain he/she could have attained if the system
wouldhaveproduced theoptimumbest ranking.For any rank, thenormalisedvalue
of 1 represents ideal performance.

Systems may be compared at various cutoff values, e.g. nxCG[1] or nxCG[500].
In addition, we may average nxCG[i] scores up to a given rank as:

MAnxCG[i] :=

∑i
j=1 nxCG[j]

i
(6)

An advantage of this latter measure is that it reflects on the quality of the ranking,
whereasnxCG reports a set-based value, measured at a single point in the ranking.

3.2 Calculating an Element’s Relevance Value

The definition of the nxCG measure is based on the gain value, xG[i], that a user
obtains when examining a returned result component at a given rank i. In this sec-
tion we detail how this gain is calculated.

We define a relevance value (RV) function, r(ci), as a function that returns a
value in [0, 1] for a component ci in a ranked result list, representing the compo-
nent’s relevance or gain value to the user. The gain value will depend on the re-
turned component’s exhaustivity and specificity (i.e. its (e, s) values) as well as on
how overlap and near-misses are handled. I.e. for the Focussed tasks overlap and
near-misses are taken into account, whereas for the Thorough tasks the relevance
value is a direct function of (e, s).

Focussed tasks. Focussed tasks are evaluated based on the assumption that re-
turned overlapping components represent only as much gain as the amount of new
relevant information they containand that the retrieval of near-misses is considered
useful to the user. The evaluation parameter that represents this setup is referred
to as “overlap=on”.

Overlap: Following theassumption thatanyalreadyviewedcomponentsbecome
irrelevant to the user, we define the following result-list dependent relevance value
(RV) function, rv(ci):

rv(ci) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

quant(assess(ci)) if ci has not yet been seen,

(1 − α) · quant(assess(ci)) if ci has been fully seen,

α ·
m∑

j=1
(rv(cj)· |cj |)

|ci| if ci has been partially seen before.
+(1 − α) · quant(assess(ci))

(7)

where assess(ci) is a function that returns the assessment value pair (e, s) for the i-
th component in the ranking if it is given within the recall-base and (0, 0) otherwise.
The function quant(·) is a quantisation function,m is the number of ci’s child nodes
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and | · | is the length of an element (in characters or words). The α ∈ [0, 1] weight-
ing factor reflects a user’s intolerance to being returned redundant components or
component-parts. The higher the α value, the less value a redundant relevant com-
ponent represents to the user.

According to the above equation, for anot-yet-seen component, the component’s
relevance value is only dependent on the component’s quantised assessment value:
quant(assess(ci)). For a component that has been already fully seen by the user,
the component’s quantised assessment value, quant(assess(ci)), is weighted by
(1 − α). For example, using α = 1, which represents a user who does not tolerate
already viewed components, we obtain an RV score of 0 for a fully seen component,
reflecting that it represents no value to the user any more. Finally, if a component
has been seen only in part before, then its relevance value is calculated recursively
based on the relevance values of its descendant nodes, combined with its own quan-
tisedassessmentvalue.The intoleranceweighting factor ofα is againused tomodify
the value attributed to already seen components. For example, using α = 1 means
that only not-yet-seen sub-components will be scored, while using α = 0 will re-
turn the unmodified quantised score of the component, regardless how much of it
the user has seen already.

Near-misses: To consider the retrieval of near-misses within the evaluation, we
reward a partial score for the retrieval of non-ideal elements that are structurally
related to ideal components. This year, only those relevant elements (as per quanti-
sation function) of the full recall-base were considered near-misses which were not
included in the ideal recall-base.

Given this set of near-misses and the ideal recall-base, the XCG measures are
applied such that the ideal gain vector of a query,xI, is derived fromthe ideal recall-
base, and the gain vectors, xG, corresponding to the system runs under evaluation
are based on the full recall-base. The relevance score of a near-miss component is
calculated by Equation 7.

Before the final gain value can be assigned to xG[i], we apply a dependency nor-
malisation function, which ensures that the total score for any sub-tree of an ideal
node cannot exceed the maximum score achievable when the ideal node itself is re-
trieved.For example, an ideal node mayhave a large number of relevant child nodes
whose total RV score may exceed that of the ideal node. The following dependency
normalisation function, rvnorm, safeguards against this by ensuring that for any
cj ∈ S, rv(ci) +

∑S
rv(cj) ≤ rv(cideal) holds:

rvnorm(ci) = min(rv(ci), rv(cideal) −
S∑

rv(cj)) (8)

where cideal is the ideal node that is on the same relevant path as ci, S is the set of
nodes in the ideal node’s sub-tree that have already been retrieved (before ci).

The final gain value: The final gain value of a result element in a ranked output
list of an XML IR system, taking into account near-misses and overlaps, is given
by the normalised relevance score of:

xG[i] := rvnorm(ci) (9)

where rvnorm(ci) is defined in Equation 8, rv(ci) is given in Equation 7.
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Thorough tasks. Thorough tasks were evaluated using the full recall-base as the
basis for deriving the ideal gain vectors. The evaluation parameter that represents
this setup is referred to as “overlap=off”.

For the Thorough tasks, systems obtain a score for returning as many of the
relevant reference elements as possible, including all overlapping nodes. The gain
value of a result element in a ranked output list is calculated as:

xG[i] := rv(ci) := quant(assess(ci)) (10)

where assess(ci) is a function that returns the assessment value pair (e, s) for the i-
th component in the ranking if it is given within the recall-base and (0, 0) otherwise.
The function quant(·) is a quantisation function.

3.3 Effort-Precision and Gain-Recall: ep/gr

The cumulated gain based measures described so far provide a recall-oriented view
of effectiveness at fixed rank positions. Next we want to measure the amount of
effort required of the user to reach a given level of cumulated gain when scanning
a given ranking compared to an ideal ranking. The horizontal line drawn at the
cumulated gain value of r, shown in Figure 1, illustrates this view. Based on this,
we define effort-precision ep as:

ep[r] :=
iideal

irun
(11)

where iideal is the rank position at which the cumulated gain of r is reached by the
ideal curve and irun is the rank position at which the cumulated gain of r is reached
by the system run. A score of 1 reflects ideal performance, i.e. when the user needs
to spend the minimum necessary effort to reach a given level of gain.

Effort-precision can be calculated at arbitrary gain-recall points, where gain-
recall is calculated as the cumulated gain value divided by the total achievable cu-
mulated gain [5]:

Fig. 1. Calculation of nxCG and effort-precision (ep)
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gr[i] :=
xCG[i]
xCI[n]

=

∑i
j=1 xG[j]∑n
j=1 xI[j]

(12)

where n is the total number of documents in the recall-base.
The meaning of effort-precision at a given gain-recall value is the amount of rel-

ative effort (where effort is measured in terms of number of visited ranks) that the
user is required to spend when scanning a system’s output ranking compared to the
effort an ideal ranking would take in order to reach a given level of gain relative to
the total gain that can be obtained.

This method follows the same viewpoint as standard precision/recall, where
recall is the control variable and precision the dependent variable. As with pre-
cision/recall, interpolation techniques are necessary to estimate effort-precision
values at non-natural gain-recall points (e.g. when calculating effort-precision at
standard recall points). We adopted linear interpolation for estimating values be-
tween two natural recall points, i.e. using straight lines (y = ax + b).

As with standard precision/recall, the non-interpolated mean average effort-
precision, denoted as MAep, is calculated by averaging the effort-precision values
measured at natural recall-point, i.e. whenever a relevant XML element is found in
the ranking. For non-retrieved relevant elements the score of 0 is used. Note that
calculating MAep still requires interpolation over the ideal curve as natural recall
points of a run may not coincide with natural recall points of the ideal ranking.

Wealso calculate anaverage over the interpolated effort-precisionvalues at stan-
dard recall points, i.e. [0.01, 0.02, ..., 1], which we refer to as iMAep.

Analogue to recall/precision graphs, we plot effort-precision against gain-recall
and obtain a detailed summary of a system’s overall performance.

3.4 The Q and R Measures

A criticism of the nxCG measures is that they do not average well across topics [3]
(in [8]). The reason for this is that as the total number of relevant documents differs
across topics, so does the upper bound performance at fixed ranks.

A solution has been suggested in [8] in the form of the following measures. Here
the explicit incorporation of the rank position in the denominator ensures that per-
formance is calculated against an always increasing ideal value:

Q − measure =
1
R

i∑
j=1

isrel(dj)
cbg(j)

cig(j) + j
(13)

where R is the total number of relevant documents, dj is the document retrieved at
rank j, isrel(·) is a binary function that returns 1 if the document is relevant (to any
degree) and 0 otherwise. The function cbg(·) is a so-called cumulated bonus gain
function, which is defined as cbg(i) := bg(i) + cbg(i − 1), where bg(i) := g(i) + 1 if
g(i) > 0 and bg(i) := 0 otherwise, and g(i) is the gain value at rank i. The function
cig(·) is the cumulated bonus gain derived for the ideal vector (analogue to cbg(·)).

R − measure =
cbg(R)

cbg(R) + R
(14)
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We employ extended versions of the above measures, adapted to XML through
the definition of g(i) := xG[i]. We refer to these measures as Q and R.

4 Results Reported in INEX 2005

The results of the following measures were reported in INEX 2005:

– Effort-precision/gain-recall (ep/gr) graphs.
– Non-interpolated mean average effort-precision (MAep).
– Interpolated mean average effort-precision (iMAep).
– Normalised xCG (nxCG) graphs, plotting the nxCG value obtained at

[1, 2, ..., 100]% of the length of the output list, i.e. 1500.
– Normalised xCG (nxCG) at various fixed ranks (e.g. nxCG[25]).
– Mean average nxCG at various fixed ranks (e.g. MAnxCG[50]).
– Q and R.

Theofficial system-oriented evaluationwasbasedon the ep/grmeasures,withMAep
being the main overall performance indicator. The official user-oriented evaluation
was based on the nxCG[10], nxCG[25] and nxCG[50] performance indicators. All
results are accessible on the INEX 2005 website5.

5 EvalJ

Allmeasures have been implementedwithin a single Java project, theEvalJ evalua-
tion package, which can be downloaded from SourceForge.net6. Instruction for how
to download the project are at https://sourceforge.net/cvs/?group id=136430.
Alternatively, installer files can be accessed from http://evalj.sourceforge.net/.
There is a README included within EvalJ, detailing how to get going and how
to run the various evaluation measures.

6 Evaluating Different Tasks

The XCG measures in EvalJ take several parameters,which define how e.g. overlap
is to be handled. These parameters are read at run time from a config file. A con-
fig file, inex2005.prop is provided within EvalJ, containing the official parameter
settings for INEX 2005. These are detailed below.

Note that the difference between the CO and COS evaluations was that the for-
mer was based on all assessed CO+S topics (29 topics), whereas the latter was
evaluated using only those assessed topics that contained a <castitle> element
(19 topics). In this case the assessment pool IDs were given within the POOL pa-
rameter to filter the total set of assessments. The pool IDs represent the following
topics: 202, 203, 205, 207, 208, 210, 212, 216, 219, 222, 223, 228, 229, 230, 232, 233,
234, 236, 239.
5 http://inex.is.informatik.uni-duisburg.de/2005/
6 https://sourceforge.net/projects/evalj/
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6.1 CO.Focussed and COS.Focussed

These taskswere evaluated using the “overlap=on”option, which means that over-
lap and near-misses are considered within the evaluation. The ideal recall-base is
generated automatically within the evaluation based on the selected quantisation
function and the methodology described in section 2.

TASK: CO.Focussed
METRICS: nxCG, ep/gr, q
ALPHA: 1.0
OVERLAP: on
QUANT FUNCTIONS: gen, strict, genLifted
DCV: 10, 25, 50
ASSESSMENTS DIR: .../adhoc2005/official/CO+S/*/
QUERY TYPE: CO+S
SUBMISSIONRUNS DIR: .../inex2005 runs/*/

TASK: COS.Focussed
METRICS: nxCG, ep/gr, q
ALPHA: 1.0
OVERLAP: on
QUANT FUNCTIONS: gen, strict, genLifted
DCV: 10, 25, 50
ASSESSMENTS DIR: .../adhoc2005/official/CO+S/*/
QUERY TYPE: CO+S
SUBMISSIONRUNS DIR: .../inex2005 runs/*/
POOLS: 275,297,273,353,300,283,309,327,292,319,321, 325,301,315,265,361,

364,349,279

6.2 CO.Thorough and COS.Thorough

These tasks were evaluated using the “overlap=off” option, whichmeans that over-
lap is tolerated within the evaluation. Therefore, no ideal recall-base is generated
and the gain value of a component is only a function of its exhaustivity and speci-
ficity values, regardless if it overlaps or not with a previously returned element.

TASK: CO.Thorough
METRICS: nxCG, ep/gr, q
ALPHA: 1.0
OVERLAP: off
QUANT FUNCTIONS: gen, strict, genLifted
DCV: 10, 25, 50
ASSESSMENTS DIR: .../adhoc2005/official/CO+S/*/
QUERY TYPE: CO+S
SUBMISSIONRUNS DIR: .../inex2005 runs/*/

TASK: COS.Thorough
METRICS: nxCG, ep/gr, q
ALPHA: 1.0
OVERLAP: off
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QUANT FUNCTIONS: gen, strict, genLifted
DCV: 10, 25, 50
ASSESSMENTS DIR: .../adhoc2005/official/CO+S/*/
QUERY TYPE: CO+S
SUBMISSIONRUNS DIR: .../inex2005 runs/*/
POOLS: 275,297,273,353,300,283,309,327,292,319,321,325,301,315,265,361,

364,349,279

6.3 CO.FetchBrowse and COS.FetchBrowse

The evaluation methodology for these task is different from all other tasks in that
two separate evaluation scoreswere calculated: anarticle-level andanelement-level
score.

The article-level score regards a system’s ability to find relevant documents in
the first place. To obtain this score, we first filter the recall-base to contain only
those article nodes that have at least one relevant element according to the chosen
quantisation. E.g. for strict quantisation, only those articles are kept that contain
at least one highly exhaustive and fully specific element. The ideal gain vector is
obtained by sorting the filtered set by quantised score. Since articles do not over-
lap, the process is the same for both overlap=on and off modes. We compare the
obtained ideal gain vector to the list of article nodes that is derived from a system
run. To derive the list of articles from a run, we reduce each XML element in the
run to its article root and keep from any two duplicate entries the first occurrence
(e.g. from <a1/e1, a1/e2, a2> we derive <a1, a2>).

The element-level score reflects a system’s ability to locate relevant elements
within an article. Each cluster of an article and its contained elements are exam-
ined individually. The order of clusters is ignored here (it was already considered at
the article-level), but the order of elements within a cluster is taken into account.
The recall-base for a given cluster consists of the relevant elements within the given
article (as per quantisation and overlap setting), where elements are ordered in de-
creasing quantised value. The list of elements within a cluster of a run is then com-
pared against the cluster’s recall-base directly. The individual cluster-scores are
then averaged over all clusters and then over all queries.

We only report effort-precision/gain-recallmeasures for the FetchBrowse tasks,
as the selection of an appropriate document cutoff value for nxCG is an open ques-
tion (due to the small number of relevant elements within each cluster-recall-base).

FetchBrowse tasks have been evaluated both with “overlap=on”and “overlap=
off” options. The “overlap=off” option evaluates systems according to the
Thorough strategy assumption. The “overlap=on” option evaluates systems ac-
cording to the Focussed strategy assumption.

TASK: CO.FetchBrowse
METRICS: ep/gr
ALPHA: 1.0
OVERLAP: on, off
QUANT FUNCTIONS: gen, strict, genLifted
DCV: 10, 25, 50
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ASSESSMENTS DIR: .../adhoc2005/official/CO+S/*/
QUERY TYPE: CO+S
SUBMISSIONRUNS DIR: .../inex2005 runs/*/

TASK: COS.FetchBrowse
METRICS: ep/gr
ALPHA: 1.0
OVERLAP: on, off
QUANT FUNCTIONS: gen, strict, genLifted
DCV: 10, 25, 50
ASSESSMENTS DIR: .../adhoc2005/official/CO+S/*/
QUERY TYPE: CO+S
SUBMISSIONRUNS DIR: .../inex2005 runs/*/
POOLS: 275,297,273,353,300,283,309,327,292,319,321,325,301,315,265,361,

364,349,279

6.4 SSCAS, SVCAS, VSCAS and VVCAS

These tasks are evaluated based on the Thorough task assumption, with “over-
lap=off”.

TASK: SSCAS #or SVCAS, VSCAS, VVCAS
METRICS: nxCG, ep/gr, q
ALPHA: 1.0
OVERLAP: off
QUANT FUNCTIONS: gen, strict, genLifted
DCV: 10, 25, 50
ASSESSMENTS DIR: .../official/SSCAS/ #or .../SVCAS/, .../VSCAS/, .../VVCAS/
QUERY TYPE: CAS
SUBMISSIONRUNS DIR: .../inex2005 runs/*/

7 Correlation Analysis of Results

7.1 Correlation of XCG Measures

We examined correlation among the different XCG measures by calculating the
Kendall τ correlation [1] between their resulting respective system rankings.

The correlation measure of Kendall’s τ is a nonparametric measure of the agree-
ment between two rankings. It computes the distance between two rankings as the
minimum pair-wise adjacent swaps necessary to turn one ranking into the other.
The distance is normalisedby the number of items being ranked such that two iden-
tical rankings produce a correlation of 1 and two rankings that are a perfect inverse
of each other produces a score of −1. The expected correlation of two rankings cho-
sen at random is 0. Previous work has considered all rankings with correlations
greater than 0.9 as equivalent and rankings with correlation less than 0.8 as con-
taining noticeable differences [9].

Table 1 shows the averaged correlation values over the following ad-hoc tasks:
CO.Focussed, CO.Thorough, COS.Focussed, COS.Thorough, SSCAS, SVCAS,
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VSCAS, VVCAS. This means that the average correlation for each measure was
calculated over 24 correlation scores: 8 tasks, each having three variants for the
three quantisation functions. Although different tasks and different quantisations
resulted in somewhat different correlation values amongst the different measures,
the overall general trend is reflected within this table.

The low levels of correlation between the overall performance measures, e.g.
MAep, and the fixed cutoff measures, e.g. nxCG[25], show that these measures re-
flect different aspects of a system’s performance and that systems which perform
well according to one criterion may not do so well according to another. However,
since MAep, iMAep and Q are highly correlated, it may be enough to report only
one of these measures in the future. MAnxCG and nxCG at the various cutoffs
also report fairly similar results, and hence the evaluation could focus just on one
or two of these measures.

Table 1. Averaged correlation of the XCG measures over 8 ad-hoc sub-tasks

MAnxCG nxCG MAep iMAep Q
[10] [25] [50] [10] [25] [50]

MAnxCG[25] 0.85
MAnxCG[50] 0.77 0.90
nxCG[10] 0.83 0.91 0.86
nxCG[25] 0.71 0.85 0.92 0.82
nxCG[50] 0.64 0.76 0.85 0.74 0.85
MAep 0.64 0.72 0.75 0.70 0.74 0.76
iMAep 0.63 0.71 0.74 0.70 0.73 0.75 0.93
Q 0.60 0.69 0.72 0.68 0.71 0.73 0.93 0.87
R 0.58 0.66 0.69 0.65 0.69 0.71 0.83 0.78 0.85

7.2 Correlation of Quantisation Functions

Next,we examinedcorrelationamong thedifferentquantisation functionsby calcu-
lating the Kendall τ correlation between the resulting respective system rankings.

Table 2 shows the averaged correlation values over the following ad-hoc tasks:
CO.Focussed, CO.Thorough, COS.Focussed, COS.Thorough, SSCAS, SVCAS,
VSCAS, VVCAS. This means that the average correlation for each measure was
calculated over 80 correlation scores: 8 tasks, each having each having results re-
ported for ten measures. Although different tasks and different measures resulted
in somewhat different correlation values amongst the different quantisation func-
tions, the overall general trend is reflected within this table.

The low correlationbetween the strict andboth versions of the generalised quan-
tisation functions indicates that these quantisations result in very noticeable result
differences among systems. It is clear that systems that perform well according to
the strict quantisation may not suit a user represented by the generalised quantisa-
tion functions. On the other hand, the two generalised quantisation functions show
rather similar behaviour, although their averagedcorrelation is still below 0.9.This
suggests that ‘too small’ elements do have some effect on system performance. To
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Table 2. Averaged correlation of the quantisation functions over 8 ad-hoc sub-tasks

strict gen
gen 0.56
genLifted 0.60 0.89

reflect this, future INEX evaluations may limit the number of quantisation func-
tions to the use of the quantstrict and quantgenLifted functions.

8 Conclusions

INEX 2005 introduced a new set of measures, the XCG measures, with the aim
to address limitations of the previous official measure (inex-eval) and provide
a suitable evaluation framework, where the dependency among XML document
components can be taken into account.

Future work on the XCG measures will aim at 1.) exploring alternative methods
for deriving ideal recall-bases, 2.) incorporating new relevance value functions that
allow scoring near-misses that are not already included in the full recall-base, e.g.
non-relevant sibling nodes, and 3.) investigating various discounting functions. In
addition,we are aiming to conduct further studies into themeasures’ reliability and
sensitivity, extending on previous work in [4].

Furthermore, other quantisation functions are currently also being investigated,
including weighted versions of the harmonic mean function [7].
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Abstract. Standard Information Retrieval (IR) metrics are not well suited for
new paradigms like XML IR in which retrievable information units are document
elements. These units are neither predefined nor independent, and the elements
returned by IR systems may overlap and contain near misses. Part of the problem
stems from the classical hypotheses on the user behaviour that do not take into
account the structural or logical context of document elements or the possibility
of navigation between retrievable units. The Expected Precision Recall with User
Model (EPRUM) metric is based on a more realistic user model which encom-
passes a large variety of user behaviours. In this paper, we present the EPRUM
metric used for evaluating the official submissions of INEX 2005 and detail the
settings we used. We do not present the full derivation of the EPRUM metric but
we give a thorough example of its computation along with the complete set of
formulas needed to compute precision at different recall values. We also discuss
the implication of such a metric on several key problems of XML Information
Retrieval as the notion of the ideal list and the problem of the overlap.

1 Introduction

This document describes the EPRUM metric in the context of XML Retrieval. EPRUM is
a metric that aims at providing a unique and comprehensive framework for the evaluation
of XML Retrieval systems1, by defining a user model which is a two fold extension of the
classical user model. First, the evaluated list can be composed of more complex objects
than simple links to documents or elements – thus allowing a natural evaluation of the
Fetch&Browse task. Second, the user is “allowed” to browse into the structural context
of a retrieved element: For example, if a subsection is returned, the user can browse to
one of its paragraph or to to its enclosing section. Overlap and near misses are naturally
handled, as we define an ideal list of non overlapping elements that can only be seen
once by the user (a system is rewarded when an “ideal” element is seen by the user).

EPRUM is an extension of the of precision-recall. As Generalised Recall [3] and
Precision-Recall with User Modelling [4], EPRUM is based on a user and relevance
probabilistic model that are the basis of the precision and recall derivations. This user
model has parameters that can be tuned so that they mimic the “average” user behaviour.

The plan of this paper is as follows. In Section 2, we show how we define precision
at a given recall level. This definition is an alternative to the classical definition of
precision-recall (PR) and yields the standard result when the user model parameters
are set to mimic the usual assumed user behaviour (the list is composed of elements

1 But not limited to: the relevance model could be used in standard information retrieval and its
user model could be reused in passage retrieval, web retrieval, video retrieval, etc.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 30–42, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and the user does not browse from a retrieved element). In Section 3, we describe the
different parameters of EPRUM and present the peculiar instantiation of the user model
we chose for evaluating INEX 2005 runs. In Section 4, we present the main EPRUM
formulas that can be used to evaluate any system run and illustrate them with examples
of evaluation for both the Focussed and the Fetch&Browse tasks. Eventually, we discuss
the implication of the EPRUM user model for the notion of ideal lists and of overlap in
Section 5.

A note about relevance: We distinguish between the relevance of an element (the
element contains some relevant material) and the ideality of an element (the fact
that the element is the unit the user wants to see, i.e. that it belongs to the “ideal
recall base”).

2 The EPRUM Metric

EPRUM is an extension of precision-recall: It is based on a definition whose special case
is the standard precision-recall as defined in TREC [6]. Precision is defined as the ratio
of the minimum number of ranks that a user has to consult in the list returned by an ideal
system and by the evaluated system, given that the user wants to see a given amount
of ideal units. At a given recall level l (0 < l ≤ 1), precision is defined formally as:

Precision(l) =

E

⎡
⎢⎢⎣Achievement indicator

for a recall l
×

Minimum number of consulted list items
for achieving a recall l (over all lists)

Minimum number of consulted list items
for achieving a recall l (system list)

⎤
⎥⎥⎦ (1)

It is easy to see that this is just an alternative definition of the precision at a given
recall level. In classical IR, if a system retrieves A+B documents, where A is the num-
ber of relevant documents and B the number of not relevant documents, then an ideal
system would achieve the same recall with a list reduced to A documents. The above
definition would result in a precision A

A+B which is the exact definition of precision –
the ratio of the number of relevant documents to the number of retrieved documents.
The achievement indicator is used to set the precision to 0 if the recall level cannot be
achieved; this is also the classical definition of precision-recall. This definition relates
to the expected search length [1] and to the precision-recall as defined in [5].

The following example illustrates the definition of the EPRUM metric; let the list
returned by a system be the following:

a b c d e

where gray nodes are ideal units while white nodes are not ideal. The standard definition
of precision would assign a precision of respectively 1, 0.25 and 0 for recalls of 1, 2
and 3 (or more). With the definition we chose, we get the same values – the classical
user model is deterministic in standard IR, so we can omit the mathematical expectation
for now:
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Recall 1. The minimum number of elements the user has to consult, over all possible
lists, is 1. The value is the same for the system list and the user was able to see one
element. Precision is 1.

Recall 2. The minimum number of elements the user has to consult, over all possible
lists, is 2. For the evaluated system, the user will have to consult the list until d - that
is, the minimum number of items that he has to consult is 4. Precision is 2/4=0.5.

Recall 3. In this case, the same process would give us a precision of 3/5 (because the
user has to consult the whole list), but has the recall cannot be attained by the user,
the achievement indicator is 0 and hence precision is also 0.

As shown in this example, this definition of precision-recall gives the same results as
the standard definition. The interest of this formulation is that we can define and use
more complex user and relevance models, and starting from the same definition, derive
a generalisation of precision-recall. It is possible to prove that, using the final formula
of EPRUM and setting its parameters so as to mimic the standard user behaviour in
“flat” IR, we get exactly the same result as trec_eval [6].

3 What is Needed to Compute EPRUM?

EPRUM can be computed given three different sets of parameters:

1. The probability that a user considers an element of the corpus. This probability
reflects the fact that the user clicks on a result in the list returned by a the IR system
and will eventually have look at the element that is associated with the list item. In
the context of XML Retrieval, we have to distinguish two cases: the Fetch&Browse
task and the others. In the case of the Focussed task, we suppose that a user will
always consider an element by clicking on its link in the returned list (this is the
classical user model). In the case of the Fetch&Browse task, the user model is more
complex and is described latter.

2. The probability that a user browses from a considered element to any neighbour
element. That is, a user, when considering an element, will most probably navigate
around it to its close context (i.e., in an XML document this would be the previous
siblings, next siblings, ancestors, etc.). This behaviour is stochastic, that is defined
by a probability, since we don’t expect all the users to behave the same way. The
probability of browsing from a considered element x to an element y could be mea-
sured, in a user experiment, by the proportion of users that would browse to y after
having considered x. An element is seen if and only if the user browsed to it from a
considered element.

3. The probability that a user finds a unit ideal. This probability is closely related to
the concept of quantisation but has a well defined meaning in EPRUM: In a user
experiment, its value would be the proportion of users that would find the given
unit ideal if they had exactly the same information need.

Unfortunately, we still don’t have enough user data to compute even an approximated
user model. Nevertheless, it is possible to define simple yet realistic behaviours. In
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INEX 2005, we chose user models close to the ones implied by xCG (where only el-
ements overlapping with an ideal unit can be rewarded) which was the official INEX
2005 metric. The underlying motivation was to compare faithfully with EPRUM sys-
tems that were optimised for xCG. We defined the following user models:

1. For the consideration,
Focussed. In the focussed task, we made the hypothesis, like in standard IR, that

a user always considers an element pointed by a list item. That is, if the third
list item is element x then the user will consult the element x (he will see the
content of this element). At a given rank i, the probability of considering an
element for the focussed task is either 0 (the element is not in the i first ranks)
or 1 (the element is in the first i list elements):

P(x ∈ Ci) =

{
1 if x is within the first i elements of the list

0 otherwise

Fetch&Browse. An item in the list is not anymore only one element but it is rather
a set of elements from the same document. We view this task as follows: The
returned list, as displayed to the user, is a list of documents. When the user
clicks on a document link, he is presented a document where system selected
elements are highlighted and ordered – imagine that there is button that can
focus on each selected element in turn. The user begins by seeing the first
ranked element, then the second, etc. for a given article.

We make the hypothesis that the probability that the user keeps on consult-
ing the list of elements depends on the amount of irrelevant material contained
in the previous consulted elements – this is somehow similar to the T2I (toler-
ance to irrelevance) user model [7]. That is, the probability that the user keeps
on going after having consulted an element in the document directly depends
on the element overlap with the ideal elements. For an element ranked j within
the ith document group, the probability that the user considers it is defined as:

P (x j ∈ Ci) = P(x j−1 ∈ Ci)

×
(

k +(1 − k)× size of intersection of x j−1 with ideal elements
size of the element

)

where P (x1 ∈ Ci)= 1 by definition (the user always consult the first highlighted
element).
The coefficient k is the minimum probability for a user to consider the next
element in the list. For INEX 2005, we empirically set k to 0.8. For example,
if the three first elements, say of size 10 characters, returned for an article have
no intersection with an ideal element, the probability that the user considers
the second one is 0.8 + 0.2 × 0 = 0.8, that she considers the third one is 0.8 ×
(0.8+0.2×0)= 0.64, etc. Note that a run that returns only elements within (or
equal to) ideal targets have their probability of considering an element always
equal to 1. In this case (and only in this case), the order among elements within
the article doesn’t change the performance of the system with respect to this
instantiation of EPRUM parameters.
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2. For the browsing or navigational behaviour, we chose a simple user model – the
user, from a considered element, can go up or down. We call this behaviour “hi-
erarchic”: The proportion of users that navigate from an element to one of its de-
scendant, or from an element of its ancestor, is equal to the ratio of the sizes of the
elements:

P(x → y) =

⎧⎪⎨
⎪⎩

size of y
size of x if y is an ancestor of x
size of y
size of x if x is an ancestor of y

0 otherwise

For instance, 30 % of the users would go from a section of size 10 its enclosing
paragraph of size 3. Note that more realistic user models, like the T2I one, could be
used. We chose this simple model because submitted runs were optimised for the
inex_eval or the XCG metrics which have an implicit user definition which is close
to this hierarchic behaviour. Note also that a user always browse from a considered
element x to x (it implies that the fact that x is consulted is equivalent to the fact
that x is seen by the user) as P(x → x) = 1.

3. The set of ideal elements was computed using the Kazai’s algorithm [2] using the
Exh quantisation:

q(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if "too small"

0 if exhaustivity is 0

0.5 if exhaustivity is 1

1 if exhaustivity is 2

This algorithm was chosen for its simplicity, and because it produces intuitively cor-
rect sets of ideal elements. Starting from the original assessments, the process is as
follows. For each relevant path (i.e. a path from the deepest element with a non zero
quantisation to the root of the document), the element with the higher quantisation
within that path is added to the ideal set. In order to remove any overlap from the
ideal set, elements that contain an ancestor in this set are all removed. The resulting
set does not contain overlapping elements and is considered as the set of elements
a user would want to see. The probability that a user – among all the user issuing
the same query need – is satisfied by an element of this set is set to 0.5 (resp. 1)
when its exhaustivity is 1 (resp. 2): Said otherwise, 100% of the users would be sat-
isfied with an highly exhaustive element while only 50% of them would be satisfied
with a fairly exhaustive element.

As there are two possible quantisations (0.5 and 1), we have to “average” (an
example is given in the next section) the precision-recall curves with two ideal
sets: The first one is composed of all the ideal elements, while the second one is
composed of the highly exhaustive ideal elements only.

Note that when an element is not in this ideal set, it does not mean that a system
returning this element will not be rewarded because a user can still browse to the
ideal element.
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4 EPRUM Formulas and Examples

We present in this section the evaluation of four lists for the Focussed (and SVCAS,
VVCAS) and Fetch&Browse tasks. We used a small database where only two (or
three) elements are ideal, as illustrated in Fig. 1. We first give the different formulas
needed to compute EPRUM given an ideal set of elements I and a particular user model
instantiation.

Starting from formula (1), the precision at a given recall � (� is the number of ideal
units the user wants to see) can be rewritten:

Precision(�) = E

[
Minimum number of consulted list items

for achieving a recall � (over all lists)

]}
(E1)

× E

⎡
⎢⎢⎣

Achievement indicator
for a recall �

Minimum number of consulted list items
for achieving a recall � (system list)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭(E2)

It can be shown that:

(E1) = ∑
rank i

i
(
P(F∗

i ≥ r)− P(F∗
i−1 ≥ r)

)

(E2) = ∑
rank i

1
i
(P(Fi ≥ r)− P(Fi−1 ≥ r))

where r is the smallest integer superior or equal to �× (number of ideal elements) and
Fi (resp. F∗

i ) is the number of ideal elements found by the user after he consulted the i
first ranks of the system list (resp. the ideal list). If we consider the classical case, where
an ideal element is retrieved or not at each rank, then P(Fi ≥ r) is either 0 or 1. In this
case, it is easy to see that the expected value E1 (resp. E2) is the actual value (or inverse
value) of the rank where the rth ideal element has been retrieved.

In order to compute the probability P(Fi = r) needed by formulas E1 and E2, we first
need to know the value of the probability P(x ∈ Si) that an ideal element x is seen after
the user has considered ranks 1 to i. As we use the same user model as in [3], we can
use a nearly identical formula:

P(x ∈ Si) = 1 −∏
y

(1 − P(y ∈ Ci)P(y → x)) (2)

where P(y ∈Ci) and P(y → x) are given by the chosen user model instantiation. In INEX
2005, we chose two different instantiations (one for the focussed/VVCAS/SVCAS tasks
and the other for the Fetch&Browse task) as described in the preceding section.

Given P(x ∈ Si) for any ideal element x and any rank i, it is possible [3] to compute
P(Fi = r) and hence P(Fi ≥ r):

P(Fi = r) = ∑
A⊆I
|A|=r

∏
x∈A

P(x ∈ Si) ∏
x∈I\A

P(x 	∈ Si) (3)
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Document 1 Document 2

b

e f

a

d

h

i

k

n

g j

m l

Fig. 1. The example database, composed of two documents and thirteen elements. There are three
ideal elements. Two of them are highly exhaustive (b and h, with a black background) for the
query while one of them is fairly exhaustive (k). The size of each element is 1 + the size of its
children (in an imaginary unit: this could be for instance the number of words divided by 100):
In this database, each element directly contains some text and possibly some descendants. The
size of e (f, i, m, k or l) is 1, the size of b is 3, the size of a is 5, etc. The probability of navigating
from an element to the other being the ratio of sizes, the probability to navigate from f to b is for
instance 1

3 .

where I is the set of ideal elements and the summation is taken over all the subsets A
of cardinality r of the ideal set of element I. The above formula simply enumerates all
the cases where exactly r ideal elements are seen by the user. It is possible to compute
it in quadratic time with respect to the cardinality of I, or to approximate it using the
normal law.

The above formulas can be used to compute the precision at any recall level. It is also
possible to compute precision at a given rank but this is not described in this paper. The
last important input, which was until now only evoked, is the ideal list. In the general
case, it is not easy to derive an ideal list from an arbitrary user model. It can also be
shown that there might not exist a unique ideal list for some user model instances, but
rather a set of ideal lists – one for each recall value.

However, in the case of the user models we used in INEX 2005, the ideal lists are
quite easy to generate: For the Focussed/VVCAS/SVCAS tasks, it is simply the ideal
set elements ordered by exhaustivity value. For the Fetch&Browse task, the ideal list
is composed of the documents ordered by decreasing sum of exhaustivity values of the
ideal elements they contain. For each document, the ideal list to return is simply the set
of ideal elements that that document contains.

In order to illustrate EPRUM behaviour, we now apply the different formulas with
the two different user models we chose for INEX 2005.
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4.1 Focussed and VVCAS, SVCAS

In order to illustrate the EPRUM metric, we use the following lists for the focussed,
VVCAS and SVCAS tasks (all these tasks do not define precisely the target element, so
the hierarchic behaviour makes sense):

A List b,h,k: This is the ideal list, composed of the ideal elements - with the “most”
ideal first.

B List k, h, b: This is the ideal list, but ordered by increasing order of ideality.
C List f, h, k: The list A but with b (first element) replaced by one of its child.
D List h, f, k: The list C, swapping the two first elements.

We assume that the probability that the user has seen more than one ideal element before
beginning to consult the list is 0; that is, P(F0 ≥ r) = 0 for r > 0. We then distinguish
two cases:

1. If the user is satisfied with an element of exhaustivity at least 2 (75 % of the users –
there is a justification that for simplicity we don’t present in the paper):

Recall 1 (level 1/2). (E1) is 1; (E2) is resp. 1, 1
2 , 1 × ( 1

3 − 0)+ 1
2 × (1 − 1

3 ) = 2
3 ,

and 1 for lists A, B, C and D. Precision is 1, 1
2 , 2

3 , and 1.
Recall 2 (level 1). (E1) is 2; (E2) is resp. 1

2 , 1
3 , 1

2 × ( 1
3 −0) = 1

6 , and 1
6 for lists A,

B, C and D. Precisions are 1, 2
3 , 1

3 and 1
3 .

2. If the user is satisfied with an element of exhaustivity at least 1 (25 % of the users):

Recall 1 (level 1/3). (E1) is 1; (E2) is resp. 1, 1, 1 × ( 1
3 − 0)+ 1

2 × (1 − 1
3 ) = 2

3 ,
and 1 for lists A, B, C and D. Precision is 1, 1, 2

3 , and 1.
Recall 2 (level 2/3). (E1) is 2; (E2) is resp. 1

2 , 1
2 , 1

2 × ( 1
3 − 0)+ 1

3 × (1 − 1
3) = 7

18 ,
and 7

18 for lists A, B, C and D. Precisions are 1, 1, 7
9 and 7

9 .
Recall 3 (level 1). (E1) is 3; (E2) is resp. 1

3 , 1
3 , 1

3 × ( 1
3 −0) = 1

9 , and 1
9 for lists A,

B, C and D. Precisions are 1, 1, 1
3 and 1

3 .

There is a way to combine the two sets of precisions that we do not describe here but
give an example instead. If a user wants to see more than two third of the ideal elements
for list B, then for 75 % of the users this means a precision of 2

3 (only highly exhaustive
elements satisfy the user) and for 25 % of them this means a precision of 1: Hence the
precision of ˙.75× 5

6 + .25 × 1 = .875. For the same list, if a user wants to see between
1
2 (excluded) and 2

3 (included) of the ideal elements, then for 75 % of the users that
means seeing 2 ideal elements with a precision 2

3 , and for 25 % of the users that means
seeing 2 ideal elements with a precision 1. Hence, a precision of .75× 2

3 + .25×1 = .75.
The evaluations order the runs in an order which is appropriate: A has the maximum

score and C is worse than D (D and C have their two first list item swapped, and D has
a fully ideal element as its top ranked element). List B, containing only ideal elements,
is overall better than C and D.
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Table 1. Evolution of the different probabilities, with respect to the different lists (A, B, C, D) for
the Focussed/VVCAS/SVCAS tasks. The three columns below probability P(x ∈ Si) correspond
respectively to the probability that element a, b, or c is seen by the user after rank i. The probabil-
ity P2 (resp. P1) is the probability that the user found at least ... ideal elements after rank i, given
that he is only satisfied with elements at least highly (resp. fairly) exhaustive.

List (b,h,k): A List (k,h,b): B
P(x ∈ Si) P2(Fi ≥) P1(Fi ≥) P(x ∈ Si) P2(Fi ≥) P2(Fi ≥)

rank b h k 1 2 1 2 3 b h k 1 2 1 2 3

1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
2 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

List (f,h,k) C List (b,i,k): D
P(x ∈ Si) P2(Fi ≥) P1(Fi ≥) P(x ∈ Si) P2(Fi ≥) P1(Fi ≥)

rank b h k 1 2 1 2 3 b h k 1 2 1 2 3

1 1
3 0 0 1

3 0 1
3 0 0 1 0 0 1 0 1 0 0

2 1
3 1 0 1 1

3 1 1
3 0 1 1

3 0 1 1
3 1 1

3 0
3 1

3 1 1 1 1
3 1 1 1

3 1 1
3 1 1 1

3 1 1 1
3

Table 2. Precision-recall for the Focussed, VVCAS, and SVCAS tasks. The precision for the four
lists and four recall intervals are shown in the four last lines. The line “correspondence” shows
what is the number of ideal elements the user wants to see if, among the elements in the ideal set,
(1) he considers that only elements with an exhaustivity 2 are ideal (2) he considers that elements
with an exhaustivity at least 1 are ideal.

recall level ]0, 1
3 ] ] 1

3 , 1
2 ] ] 1

2 , 2
3 ] ] 2

3 ,1]
correspondence 1,1 1,2 2,2 2,3

A 1 1 1 1
B 0.63 0.63 .75 0.88
C 0.67 0.69 0.44 0.33
D 1 0.94 0.44 0.33

4.2 Fetch and Browse

For the fetch&browse example, we illustrate EPRUM behaviour using the following
lists:

A List D2[h,k] D1[b]: this is the ideal list composed of elements from two documents,
D2 and D1. D2 is to be ranked before D1 because it contains more ideal elements.

B List D1[b] D2[h,k]: the ideal list in reverse order.
C List D2[i,k] D1[b]: the first document returned contains a near miss (i); as i is fully

specific (contained in an ideal element), the probability that the user consults the
next element (k) is 1.

D List D2[g,k] D1[b]: in this list, the first element of the first returned document is an
element that overlaps partially with an ideal element; hence, the user will consider
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the element k of D2 with a probability inferior to 1. Said otherwise, some users
only will continue to consult the second highlighted highlighted elements within
D2. The probability that the user consults the element k in D2 is 0.8+0.2× 1

2 = 0.9
as one half of g overlaps with the ideal element h: At the first rank (document D2)
the user sees h with a probability .5, and k with a probability .9. Another thing to
note, is that if h and k satisfy the user, then he sees at first rank at least one ideal
element with a probability 1

2 × .9+ 1
2 × .1+ 1

2 × .9 = 1.9
2 , the three terms of the sum

being the case where (1) the user sees h and k, (2) the user sees k but not h, and (3)
the user sees h but not k.

Note also that the only real difference between lists C and D is that the first element is
not fully specific (because the same proportion of users will browse from element g to
h and from element i to h).

Table 3. Evolution of the different probabilities, with respect to the different lists (A, B, C, D) for
the Fetch&Browse task. The three columns below probability P(x ∈ Si) correspond respectively
to the probability that element a, b, or c is seen by the user after rank i. The probability P2 (resp.
P1) is the probability that the user found at least 2 (resp. 1) ideal elements after rank i, given that
he is only satisfied with elements at least highly (resp. fairly) exhaustive.

List D2[h,k] D1[b]: A List D1[b] D2[h,k]: B
P(x ∈ Si) P2(Fi ≥) P1(Fi ≥) P(x ∈ Si) P2(Fi ≥) P2(Fi ≥)

rank b h k 1 2 1 2 3 b h k 1 2 1 2 3

1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

List D2[i,k] D1[b]: C List D2[g,k] D1[f]: D
P(x ∈ Si) P2(Fi ≥) P1(Fi ≥) P(x ∈ Si) P2(Fi ≥) P1(Fi ≥)

rank b h k 1 2 1 2 3 b h k 1 2 1 2 3

1 0 1
2 1 1

2 0 1 1
2 0 0 1

2 .9 1
2 0 1.9

2
.9
2 0

2 1 1
2 1 1 1

2 1 1 1
2 1 1

2 .9 1 1
2 1 1.9

2
.9
2

Like in the previous Section, we distinguish two cases:

1. If the user is satisfied with an element of exhaustivity at least 2 (75% of the users –
there is a justification that we don’t present here):
Recall 1 (level 1/2). (E1) is 1; (E2) is resp. 1, 1, 1 × ( 1

2 − 0)+ 1
2 × (1 − 1

2 ) = 3
4 ,

and 3
4 for lists A, B, C and D. Precision is 1, 1, 3

4 , and 3
4 .

Recall 2 (level 1). (E1) is 2; (E2) is resp. 1
2 , 1

2 , 1
2 × ( 1

2 −0) = 1
4 , and 1

4 for lists A,
B, C and D. Precisions is 1, 1, 1

2 and 1
2 .

2. If the user is satisfied with an element of exhaustivity at least 1 (25 % of the users):
Recall 1 (level 1/3). (E1) is 1; (E2) is resp. 1, 1, 1, and 1 × ( 1.9

2 − 0)+ 1
2 × (1 −

1.9
2 ) = 3.9

4 for lists A, B, C and D. Precision is 1, 1, 1, and 3.9
4 .

Recall 2 (level 2/3). (E1) is 1; (E2) is resp. 1, 1
2 , 1 × ( 1

2 − 0)+ 1
2 × (1 − 1

2 ) = 3
4 ,

and 1× ( .9
2 −0)+ 1

2 × ( 1.9
2 − .9

2 ) = 2.8
4 for lists A, B, C and D. Precisions are 1,

1
2 , 3

4 and 2.8
4 .
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Recall 3 (level 1). (E1) is 2; (E2) is resp. 1
2 , 1

2 , 1
2 ×( 1

2 −0) = 1
4 , and 1

2 ×( .9
2 −0) =

.9
4 for lists A, B, C and D. Precisions are 1, 1, 1

2 and .9
2 .

Using the same technique that in the previous section, we now combine the precisions
for these two sets of users.

Table 4. Precision-recall for the list A-D (Fetch&Browse). The precision for the four lists and
four recall intervals are shown. The line “correspondence” shows what is the number of ideal
elements the user wants to see if, among the elements in the ideal set, (1) he considers that only
elements with an exhaustivity 2 are ideal (2) he considers that elements with an exhaustivity at
least 1 are ideal.

recall level ]0, 1
3 ] ] 1

3 , 1
2 ] ] 1

2 , 2
3 ] ] 2

3 ,1]
correspondence 1,1 1,2 2,2 2,3

A 1 1 1 1
B 1 .88 .88 1
C .81 .75 .56 .50
D .81 .74 .55 .49

The evaluations are as expected; list A has the maximum score, followed by list
B (where the two documents were swapped). Then list C is superior to D, although
very close: the difference lies in the fact that a part of the users did not continue to
explore the document as the first element (for list D) was not fully specific.

5 Implications

The EPRUM metric makes explicit the user behaviour by defining a probabilistic user
model. The probabilistic model is important since in XML IR we cannot expect all the
users to behave the same way in a given document. This model has two interesting
implications in XML IR:

The notion of ideal list. The ideal list is used both by EPRUM and xCG metrics to
compute respectively the ideal precision/recall and effort/gain curves. While in xCG
the notion of ideal list and ideal set of elements are the same, this is not the case in
EPRUM: The ideal set of elements is, as in xCG, the set of elements that would satisfy
users with the same query need. Contrarily to xCG, the ideal list of EPRUM is not
always the set of ideal elements and depends on the specific user model. To illustrate
this point, let us take a very peculiar (and not so realistic) user model: A user always
browses to the first and the last paragraph of a consulted section. If the set ideal elements
is reduced to two paragraphs – the first and the last of a section S, then the ideal set is
composed of the two paragraphs while the ideal list is reduced to the section S.

A consequence of that separation is that there might exist more than one ideal list,
one for any given recall r. Let’s take an example to illustrate this point: Let a, b, and
c be three elements; b and c are ideal. The list is composed of elements in the corpus.
The probability of navigating from a to b (or c) is 0.9. For a recall 1, an ideal list would
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be a simple list restricted to one of the ideal elements, b or c, with an expected length
of 1. For a recall 2, an ideal list would be (a,b,c) because 81 % of the users would see
two ideal elements after the first rank, 9 % after the second and 10 % after the third –
thus implying an expected search length of 1.29 (instead of 2 with a list composed of
b and c).

Overlap. The preceding example also illustrate another consequence of the EPRUM
user model: Overlap might be a good property of the returned list. Let a be an ancestor
of b and c in the previous example. As 19% of the users did not see the two elements
after having consulted a in the list, it is necessary to return the two overlapping elements
b and c so that 100% of the users eventually see all the ideal elements. This situation
might arise whenever it is more interesting (in terms of expected search length) to first
return one ancestor rather than each of its ideal descendants.

In INEX 2005, the chosen user model implies that there is only one ideal list (or a
set of ideal lists but with the same expected search lengths for each recall value) and
that the ideal list does not contain overlapping elements. However, it is interesting to
underline the fact that choosing more complex user model might imply multiple ideal
lists for different recall values and overlap in the ideal list. This would also be the case
for the xCG metrics family if they reward near misses that are neither ancestors nor
descendants of an ideal element.

6 Discussion

Most metrics used to compare the performance of semi-structured document search en-
gines rely – sometimes implicitly – on a simplistic user behaviour: The user is supposed
to consult exclusively the elements of the list returned by the engine. This user model
is no more adapted to recent IR tasks like XML. In particular it does not allow con-
sidering user ability to navigate between elements, using the list as entry points to the
information he seeks.

In this article, we briefly presented the EPRUM metric and showed how it was
used in INEX 2005 to evaluate participant submissions. EPRUM is a generalisation of
precision-recall that reduces to standard recall-precision if browsing between elements
is not allowed and if element relevance is binary. It is also worth noting that EPRUM is
somehow a natural extension of xCG (in particular of the new EP/GR metric) where the
user and relevance model are explicit and the metric formulas derived from a theoretic
user model, thus providing a consistent framework for XML IR evaluation.

Specifying explicitly the user model allows EPRUM to be set so that it measures
the “average satisfaction” of users with the same query need. It is possible to set the
metric’s parameters so that the user model is closer to the real user behaviour in the
context of XML IR when user experiments are available. We hope that such data will
be available if, as discussed during the INEX 2005 workshop, topics in INEX 2006 are
created using an interface that will log all the actions undertaken by the topic creator.

Further work are planned to investigate an instantiation of EPRUM parameters that
would use experimental data from the INEX interactive track and to compare more
thoroughly xCG and EPRUM. With respect to the latter, we expect to reach a quite high
correlation when the EPRUM instantiation is as close as possible to the implied xCG
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models: Preliminary experiments have shown that the correlations between average pre-
cision of each topic and each system run in INEX 2005 are respectively 0.75, 0.62 and
0.78 for the Pearson, Kendall and Spearman coefficients. In order to compare the two
metrics, it would be necessary to analyse the differences in detail.

EvalJ

EPRUM is implemented in the EvalJ software, along with all the other metrics of INEX.
It can be downloaded from this URL:http://evalj.sourceforge.net
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Abstract. This paper describes our proposal for an evaluation metric
for XML retrieval that is solely based on the highlighted text. We sup-
port our decision of ignoring the exhaustivity dimension by undertaking
a critical investigation of the two INEX 2005 relevance dimensions. We
present a fine grained empirical analysis of the level of assessor agree-
ment of the five topics double-judged at INEX 2005, and show that the
agreement is higher for specificity than for exhaustivity. We use the pro-
posed metric to evaluate the INEX 2005 runs for each retrieval strategy
of the CO and CAS retrieval tasks. A correlation analysis of the rank or-
derings obtained by the new metric and two XCG metrics shows that the
orderings are strongly correlated, which demonstrates the usefulness of
the proposed metric for evaluation of XML retrieval performance.

1 Introduction

How to properly evaluate XML retrieval effectiveness is a much-debated ques-
tion among the XML retrieval research community. Over the past four years
INEX has been used as an arena to investigate the behaviour of a variety of
evaluation metrics. However, unlike in previous years a new set of official met-
rics was adopted at INEX 2005, which belong to the eXtended Cumulated Gain
(XCG) family of metrics [2, 4]. Two official INEX 2005 metrics are nxCG (with the
nxCG[r] measure), which for a rank r measures the relative retrieval gain a user
has accumulated up to that rank, compared to the gain they could have accu-
mulated if the system had produced the optimal ranking; and ep/gr (with the
MAep measure), which for a cumulated gain level measures the amount of relative
effort (as the number of visited ranks) a user is required to spend compared to
the effort they could have spent while inspecting an optimal ranking [3].

Since 2003, two relevance dimensions — exhaustivity and specificity — have
been used in INEX to measure the extent to which an element is relevant to
the information need expressed by an INEX topic. A highlighting assessment
approach was used at INEX 2005 to gather relevance judgements for the retrieval
topics [7]; here, the specificity of an element is automatically computed as the
ratio of highlighted to fully contained text, while the assessor is asked to explicitly
judge the exhaustivity of that element. Figure 1 shows a sample of relevance
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<file collection="ieee" name="co/2000/r7108">
<element path="/article[1]" E="1" size="13,556" rsize="5,494"/>
<element path="/article[1]/bdy[1]" E="1" size="9,797" rsize="4,594"/>
<element path="/article[1]/bdy[1]/sec[2]" E="1" size="2,064" rsize="2,064"/>
<element path="/article[1]/bdy[1]/sec[2]/st[1]" E="?" size="30" rsize="30"/>
</file>

Fig. 1. A sample from the INEX 2005 CO topic 203 relevance judgements for article
co/2000/r7108. For each judged element, E shows the value for exhaustivity (with
possible values ?, 1 and 2), size denotes the element size (measured as total number of
contained characters), while rsize shows the actual number of characters highlighted
as relevant by the assessor

judgements obtained for INEX 2005 Content Only (CO) topic 203. For each
judged element, E shows the exhaustivity of the element, with possible values of
? (too small), 1 (partially exhaustive), and 2 (highly exhaustive); size denotes
the total number of characters contained by the element; and rsize shows the
actual number of highlighted characters by the assessor.

To measure the relevance of an element, the official INEX 2005 metrics com-
bine the values obtained from the two INEX relevance dimensions. For example,
if the observed value for E is 1 and both values for size and rsize are the
same, the element is deemed as highly specific but only partially exhaustive [7].
A quantisation function is then used to combine these two values into a number
that is subsequently used to reflect the relevance of the element [3]. However, in
previous work we have shown that finding the best way to combine the values
from exhaustivity and specificity to reflect the relevance of an element is too dif-
ficult [8]; moreover, recent analysis by Trotman has also shown that the element
level agreement between two assessors across the twelve double-judged topics at
INEX 2004 is very low, suggesting that “quantization functions based on rele-
vance levels will prove unsound” [10]. In Section 2 we revisit and validate the
above claim by analysing the level of assessor agreement across the five topics
that were double-judged at INEX 2005.

Another criticism of the official INEX metrics is their lack of simplicity, and
their slight departure from the well-established information retrieval norms [1].
Further to this, to consider the level of overlap among retrieved elements, the XCG
family of metrics use a rather ad hoc methodology in constructing the so-called
ideal recall-base [3], where a dependency normalisation function is also used
to adjust the scores of the descendents of the ideal elements. To date, critical
analysis of whether the reliance on these or alternative choices has a positive or
negative impact on the XML retrieval evaluation has not been provided.

We contend that the purpose of the XML retrieval task is to find elements
that contain as much relevant information as possible, without also containing
a significant amount of non-relevant information. To measure the extent to which
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an XML retrieval system returns relevant information, we follow an evaluation
methodology that only takes into account the amount of highlighted text in a
retrieved element, without considering the E value of that element. In Section 3
we introduce HiXEval (pronounced hi–ex–eval) – an Evaluation metric for XML
retrieval that extends the traditional definitions of precision and recall to include
the knowledge obtained from the INEX 2005 Highlighting assessment task.

We recognise that there are no absolute criteria for the choice of a metric
for XML retrieval. However, we argue that HiXEval meets all the requirements
needed for an unbiased XML retrieval evaluation, and show in Section 4 that,
given the strong correlations of its rank orderings to the ones obtained by the
XCG metrics, it can and should be used to evaluate XML retrieval effectiveness.

2 Analysis of INEX 2005 CO and VVCAS Relevance
Judgements

In this section, we analyse the INEX 2005 relevance judgements obtained for
the CO and Vague Content And Structure (VVCAS) topics. First, we analyse the
distribution of the E?, E1, and E2 judged elements across the INEX 2005 topics.
Then, we analyse the level of assessor agreement obtained from the five topics
that have been double-judged at INEX 2005 (four CO, and one VVCAS).

2.1 Distribution of Relevant Elements

The INEX 2005 IEEE document collection comprises 16,820 scientific articles
published between 1995–2004, with an average article length of 44,030 characters.
Currently, there are 29 CO and 34 VVCAS topics that have corresponding relevance
judgements available1. We use relevance judgements for both parent and child
VVCAS topics in our analysis.

By analysing the INEX 2005 relevance judgements, we aim to discover
whether the average number, size, and proportion of contained relevant infor-
mation in judged elements differ depending on the exhaustivity value given to
these elements. For example, we expect to find many relevant elements whose
exhaustiveness is judged as “?”, making them too small. The proportion of rel-
evant information found in these elements (their specificity value) is expected
to be very high, reflecting the fact that most of the contained information is
relevant. Conversely, it is reasonable to expect that the distribution of other rel-
evant elements (such as E1 or E2) is likely to differ from the distribution of the
too small elements, both in terms of their average number, size, and proportion
of contained relevant information.

Table 1 shows our analysis of the INEX 2005 CO and VVCAS relevance judge-
ments. As expected, for both types of topics the assessment trends are clear:
The too small (E?) elements are the most common, the smallest in size, and
contain the highest proportion of relevant information. In contrast, the highly

1 We use version 7.0 of the INEX 2005 ad hoc relevance judgements.
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Table 1. Statistical analysis of the distribution of E? (too-small), E1, and E2 relevant
elements across the INEX 2005 CO and VVCAS topics. Numbers for Size and RSize
represent averages obtained from each of the 29 CO and 34 VVCAS topics, respectively.
Mean average values (calculated across all topics) are shown in bold.

CO VVCAS
Value Total Size RSize Total Size RSize

(elements) (bytes) (%) (elements) (bytes) (%)

E? (too-small)
Mean Average 1706 190 97 5710 101 99

Minimum 2 4 59 2 7 91
Maximum 14,543 1,497 100 44,628 497 100
Median 392 72 100 2,422 74 100

Standard Deviation 3,281 359 8 9,118 104 2

E1
Mean Average 389 7,508 60 439 9,359 64

Minimum 14 497 20 8 1,738 21
Maximum 1,519 13,477 100 1,876 20,236 100
Median 251 7,177 59 365 7,835 71

Standard Deviation 378 3,379 19 415 5,156 20

E2
Mean Average 143 18,039 55 174 21,575 58

Minimum 2 2,686 16 14 3,746 19
Maximum 1,203 45,909 100 839 55,028 94
Median 46 17,297 50 53 16,832 54

Standard Deviation 237 10,961 20 222 12,550 19

exhaustive (E2) elements are the least common, the largest in size, and contain
the smallest proportion of relevant information. The partially exhaustive (E1)
elements lie in between.

These statistics show that — on average, at least — the assignment of the
three exhaustivity grades seems to properly reflect their initial relevance def-
initions [7]. However, a closer look at the too small element distribution re-
veals some inconsistencies in connection to the E? relevance grade. For example,
Table 1 shows that the maximum average size of the too small elements is 1,497
characters, which is found for CO topic 207. On the other hand, the minimum
value for the proportion of contained relevant information is 59%, found for CO
topic 222. A closer inspection of the relevance judgements for these two topics
reveals many cases where an article body is judged to be too small, while the
whole article is judged to be either E1 or E2, despite the fact that the sizes of
the article and its body are nearly the same. Given that the average size of an
article in the INEX 2005 document collection is 44,030 characters, we should ask
the question: How can a 40KB article body be so incomplete that it is judged
to be too small?
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These and similar examples suggest that assessors seem to have their own in-
terpretations of what too small means; arguably, these interpretations could have
an adverse effect on retrieval evaluation, especially in cases where exhaustivity
is given a high weight by the evaluation metric.

Next, for each grade of the two INEX relevance dimensions, we undertake an
analysis of the level of agreement between the two assessors of the five double-
judged topics at INEX 2005, to find whether there is indeed a reason for ignoring
the exhaustivity dimension during evaluation.

2.2 Level of Assessor Agreement

Four of the five topics double-judged at INEX 2005 are CO topics (numbers 209,
217, 234, and 237), while one is a VVCAS topic (number 261). As shown in Table 2,
we calculated two separate assessor agreements: one at article level, and another
at element level. The ∪ values represent the number of unique relevant items
judged by the two assessors, while ∩ values are the number of mutually agreed
relevant items. The level of assessor agreement is shown by the ∩/∪ values.

The assessor agreements shown in Table 2 are calculated for seven different
cases: once for all relevant (non-zero) items, and for six other cases when relevant
items belong to each of the six relevance grades of the two INEX relevance

Table 2. Overall article and element level agreement between two assessors for the
five topics double-judged at INEX 2005. Agreements are calculated on all relevant
(non-zero) items, and separately on items that belong to a relevance grade of an INEX
relevance dimension. For an INEX 2005 topic, the value of ∪ represents the total number
of unique relevant items judged by the two assessors, while ∩ shows the number of
mutually agreed relevant items. The ∩/∪ values reflect the level of agreement between
the two assessors. Mean average ∩/∪ values are shown in bold.

Non-zero E? E1 E2 S1 S2 S3
Topic (Type) (∪) (∩) (∩/∪) (∩/∪) (∩/∪) (∩/∪) (∩/∪) (∩/∪) (∩/∪)

Article level
209 (CO) 133 48 0.36 — 0.05 0.33 0.19 0.06 0.00
217 (CO) 58 19 0.33 0.00 0.10 0.17 0.00 0.00 0.19
234 (CO) 254 193 0.76 — 0.14 0.22 0.71 0.58 0.00
237 (CO) 134 25 0.19 — 0.09 0.13 0.19 — —
261 (VV) 38 11 0.29 — 0.03 0.70 0.14 0.50 0.00
Mean 123 59 0.39 0.00 0.08 0.31 0.25 0.28 0.05

Element level
209 (CO) 17,599 2,122 0.12 0.08 0.12 0.07 0.08 0.03 0.10
217 (CO) 10,441 1,911 0.18 0.17 0.01 0.06 0.00 0.01 0.18
234 (CO) 5,785 2,824 0.49 0.01 0.15 0.15 0.62 0.22 0.43
237 (CO) 1,630 220 0.13 0.02 0.10 0.11 0.14 0.05 0.09
261 (VV) 5,470 1,657 0.30 0.30 0.12 0.29 0.12 0.23 0.30
Mean 8,185 1,747 0.24 0.12 0.10 0.14 0.19 0.11 0.22
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dimensions. Since the specificity dimension at INEX 2005 is measured on a
continuous [0-1] scale, we decided to divide this scale to three equal relevance
sub-scales, and to assign the marginally specific (S1) items to the (0-0.33] scale,
the fairly specific (S2) items to (0.33-0.67] scale, and the highly specific (S3)
items to the (0.67-1.0] scale. We have also experimented with different (three-
and four-graded) variations of relevance sub-scales, and found that the choice of
the sub-scale does not influence the validity of the reported results.

At article level, the assessor agreement for non-zero articles (those articles con-
sidered relevant by both assessors, irrespective of their relevance grades) varies
from 0.19 on topic 237, to 0.76 on topic 234. The mean article-level agreement
between the two assessors is 0.39, which is greater than the value of 0.27 reported
by Trotman on the INEX 2004 topics [10], but still lower than the three values —
0.49, 0.43, and 0.42 — reported by Voorhees on the TREC-4 topics [11]. When
considering article-level agreements on individual relevance grades, we observe
that the highest level of agreement between the two assessors is 0.31 (on highly
exhaustive E2 articles).

At element level, the assessor agreement when all the non-zero elements are
considered varies from 0.12 on topic 209, to 0.49 on topic 234. The mean element-
level agreement between the two assessors is 0.24, which is (again) greater than
the value of 0.16 reported by Trotman on the INEX 2004 topics [10]. Unlike
for the article-level agreements, the agreement between the two assessors on
individual relevance grades seems to be higher for specificity rather than for
exhaustivity, with the highest level of agreement (0.22) on highly specific S3
elements. We realise, however, that these values should be treated with care,
since results from only five topics — the only ones known to be double-judged
at INEX 2005 — are used in our analysis.

Although this analysis provides a useful insight as to how the concept of
relevance is understood by the INEX assessors, it still does not provide enough
evidence to answer the following question: Is it easier for the assessor to be
consistent while highlighting relevant content, or while choosing an exhaustivity
value using a three-graded relevance scale? We believe that the first activity
is a series of independent relevant-or-not decisions, whereas the second activity
additionally involves comparison with other dependent decisions, given that the
exhaustivity value for a parent element is always equal or greater than the value
of any of its children. In Table 3 we present a fine-grained analysis of the element-
level agreement on each of the six relevance grades, by only considering those
elements that were mutually agreed to be relevant by both assessors.

The methodology is as follows. First, we take all the judgements obtained
from each assessor of the five official INEX 2005 topics, and then for each topic
we select only those relevant (non-zero) elements that are also confirmed to
be relevant by the additional assessor of the INEX 2005 topic. We refer to these
elements as mutually agreed (MA) elements. Next, for both exhaustivity and speci-
ficity, we count how many of the MA elements belong to a particular relevance
grade. For example, Table 3 shows that the distribution of the 2,824 MA elements
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Table 3. Fine grained element level agreement between two assessors for the five
topics double-judged at INEX 2005. For an INEX 2005 topic, MA represents the number
of mutually agreed relevant (non-zero) elements. For a relevance grade of an INEX
relevance dimension, the value of ∪ represents the number of relevant elements judged
by the assessor of the official INEX 2005 topic, which are part of the mutually agreed
relevant elements for that topic. The value of ∩/∪ reflects the fraction of elements
confirmed to belong to the same relevance grade by the additional assessor of the
INEX 2005 topic. Mean average ∩/∪ values are shown in bold.

E? E1 E2 S1 S2 S3
Topic MA (∪) (∩/∪) (∪) (∩/∪) (∪) (∩/∪) (∪) (∩/∪) (∪) (∩/∪) (∪) (∩/∪)

209 2,122 1,629 0.73 424 0.50 69 0.70 94 0.84 59 0.25 1,969 0.83
217 1,911 1,889 0.88 15 0.33 7 0.86 1 0.00 1 1.00 1,909 0.97
234 2,824 878 0.01 810 0.81 1,136 0.19 782 0.96 145 0.49 1,897 0.99
237 220 29 0.28 145 0.86 46 0.26 129 0.89 29 0.34 62 0.90
261 1,657 1,545 0.98 72 0.54 40 0.70 19 0.58 25 0.48 1,613 1.0
Mean 1,747 1,194 0.58 293 0.61 260 0.54 205 0.65 52 0.51 1,490 0.94

for topic 234 is as follows. For exhaustivity, 878 are too small, 810 are E1, and
1,136 are E2 elements. For specificity, 782 are S1 elements, 145 are S2, and 1,897
are S3 elements. Last, for each relevance grade, we calculate the proportion of
MA elements that are also confirmed to belong to the same relevance grade by the
additional assessor of the INEX 2005 topic. These numbers are then averaged
across the five INEX topics. For example, for topic 234 the E1 relevance grade
has the highest level (0.81) of MA element agreement for exhaustivity (but almost
zero agreement for E?), while two relevance grades for specificity, S1 and S3, have
almost perfect MA element agreement.

From the average numbers, we identify two cases where conclusions can be
drawn: the case of the E? relevance grade, with the average of 1,194 MA elements,
and the case of S3 relevance grade, with the average number of 1,490 MA elements.
We observe that (on average) only 58% of the E? MA elements are also confirmed
to be E? by the additional assessors of the INEX 2005 topics. This confirms our
previous conjecture that the assessors do not agree on the exact interpretation of
too small. Conversely, on average 94% of the S3 MA elements are also confirmed to
be S3, indicating that assessors clearly agree on the highlighted relevant content.
The agreements for the other four relevance grades (all above 50%) are more or
less similar, however no conclusions can be drawn due to the relatively small
average number of MA elements.

The results obtained from the analysis of the level of assessor agreement
suggest that there is good reason for ignoring the exhaustivity dimension during
evaluation, since it appears to be easier for the assessor to be consistent when
highlighting relevant content than when choosing one of the three exhaustivity
values. In the next section, we present an evaluation metric for XML retrieval
that solely uses specificity to evaluate the XML retrieval effectiveness.



50 J. Pehcevski and J.A. Thom

3 HiXEval — Highlighting XML Retrieval Evaluation

Our proposal for an alternative metric for XML retrieval is mainly motivated
by the need to simplify the XML retrieval evaluation, as well as the need to use
a metric that is conformant to the well-established evaluation measures used in
traditional information retrieval. The HiXEval metric credits systems for retriev-
ing elements that contain as much highlighted (relevant) textual information as
possible, without also containing a significant amount of non-relevant informa-
tion. To measure the extent to which an XML retrieval system returns relevant
information, we only take into account the amount of highlighted text in a re-
trieved element, without considering the value of exhaustivity for that element.
We propose to extend the traditional definitions of precision and recall as follows.

Precision =
amount of relevant information retrieved

total amount of information retrieved

Recall =
amount of relevant information retrieved

total amount of relevant information

Let e be an element that belongs to a ranked list of elements returned by an
XML retrieval system. Three distinct scenarios are possible for this element:

1. e is a not-yet-seen element (NS );
2. e has previously been fully seen (FS ), and
3. e is an element-part, that has been in part seen previously (PS ).

Let rsize(e) be the number of highlighted (relevant) characters. To measure
the value of retrieving relevant information from e at rank r, we define the
relevance value function rvalr(e) as:

rvalr(e) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

rsize(e) if e is NS

rsize(e) − α · rsize(e) if e is FS

rsize(e) − α ·
∑
e′

rsize(e′) if e is PS

where e′ represents a previously retrieved element that at the same time is de-
scendant of e, which appears at rank higher than r (if any). The parameter α is
a weighting factor that represents the importance of retrieving non-overlapping
elements in the ranked list. By introducing α in the rvalr(e) function, differ-
ent models of user behaviour can be represented. For example, setting α to 1
(overlap=on) models users that do not tolerate overlap, and ensures that the
system will only be credited for retrieving relevant information that has not
been previously retrieved by other overlapping elements. Conversely, setting α
to 0 (overlap=off) models tolerant users and ensures that the system is always
credited for retrieving relevant information, regardless of whether the same in-
formation has previously been retrieved.
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Let size(e) be the total number of characters contained by e, and Trel the
total amount of relevant information for an INEX topic (if α = 1, then Trel is
the number of highlighted characters across all documents; if α ∈ [0, 1), then
Trel is the number of highlighted characters across all elements). Let i be an
integer that reflects the rank of an element, and i ∈ [1, r].

We measure the fraction of retrieved relevant information as:

P@r =
1
r

·
r∑

i=1

rvali(e)
size(e)

The P@r measure ensures that, to achieve a precision gain at rank r, the retrieved
element e needs to contain as little non-relevant information as possible.

We measure the fraction of relevant information retrieved as:

R@r =
1

Trel
·

r∑
i=1

rvali(e)

The R@r measure ensures that, to achieve a recall gain at rank r, the retrieved
element e needs to contain as much relevant information as possible.

In addition to the above measures, we also calculate values for MAP and iMAP,
which represent mean average precision (calculated at natural recall levels), and
interpolated mean average precision (calculated at standard 11 recall levels),
respectively.

The two precision and recall values could be combined in a single value for a
given rank r using the F-measure (the harmonic mean) as follows.

F@r =
2 · P@r · R@r

P@r+ R@r

By comparing the F@r values obtained from different systems, it would be pos-
sible to see which system is more capable of retrieving as much relevant infor-
mation as possible, without also retrieving a significant amount of non-relevant
information.

4 HiXEval Versus XCG in XML Retrieval Experiments

In this section, we demonstrate the usefulness of HiXEval compared to the XCG-
based metrics in XML retrieval experiments. More specifically, we make direct
use of the INEX evaluation methodology — its desire to order XML retrieval
runs to understand which retrieval techniques work well and which do not — to
find how the run orderings generated by the HiXEval measures compare to the
run ordering obtained when using measures from the XCG family of metrics.

We present results for all the retrieval strategies explored in the two INEX
2005 sub-tasks (CO and CAS).2 From the XCG family of metrics, we use nxCG and
2 Results for retrieval strategies in the +S sub-task are not included, since they are

similar to the results presented for the CO sub-task.
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ep/gr in our experiments. The genLifted quantisation function is used with
both metrics, which means that the E? elements are included during evalua-
tion [3]. We use the rank (Spearman) correlation coefficient to measure the ex-
tent to which the rank orderings obtained from a pair of measures correlate. We
choose this primarily because, with non-parametric correlation using the Spear-
man coefficient, there is no need to assume that data in the pairs come from
normal distributions. Values of the Spearman coefficient range from +1 (perfect
positive correlation), through 0 (no correlation), to -1 (perfect negative correla-
tion). All reported values are statistically significant (p < 0.01).

4.1 INEX 2005 CO Sub-task

Three retrieval strategies are explored in the CO sub-task: Thorough, Focussed,
and FetchBrowse [6]. We use different settings for each evaluation measure of the
nxCG, ep/gr and HiXEval metrics depending on the strategy used. For example,
for the Focussed strategy we use a setting which penalises runs that retrieve
overlapping elements (overlap=on), whereas for the Thorough strategy a setting
that ignores the overlapping retrieved elements is used (overlap=off).

Thorough Retrieval Strategy. The upper part of Table 4 shows Spearman
correlation coefficients calculated from the run orderings using the 55 submitted
runs for the INEX 2005 CO.Thorough retrieval strategy. We observe that each
of the three nxCG measures is strongly correlated to the corresponding precision
measure of HiXEval. Interestingly, there is low correlation between the three
nxCG measures and their corresponding recall measures in HiXEval. The table

Table 4. Spearman correlation coefficients calculated from the run orderings obtained
from pairs of evaluation measures using the 55 submitted runs for the INEX 2005
CO.Thorough (upper part) and 44 runs for the CO.Focussed (lower part) retrieval strate-
gies. Correlation scores between an evaluation measure from the XCG family of metrics
and its corresponding measure from HiXEval are shown in bold.

nxCG ep/gr HiXEval
Metric (measure) 10 25 50 MAep P@10 R@10 P@25 R@25 P@50 R@50 MAP

CO.Thorough
(overlap=off)
nxCG (nxCG[10]) 1.00 0.94 0.91 0.82 0.96 0.31 0.91 0.28 0.88 0.34 0.83
nxCG (nxCG[25]) 0.94 1.00 0.97 0.86 0.90 0.35 0.95 0.33 0.94 0.39 0.85
nxCG (nxCG[50]) 0.91 0.97 1.00 0.92 0.85 0.40 0.92 0.37 0.96 0.43 0.89
ep/gr (MAep) 0.82 0.86 0.92 1.00 0.74 0.52 0.80 0.49 0.87 0.54 0.94

CO.Focussed
(overlap=on)
nxCG (nxCG[10]) 1.00 0.98 0.96 0.95 0.92 0.17 0.89 0.23 0.88 0.22 0.73
nxCG (nxCG[25]) 0.98 1.00 0.98 0.96 0.90 0.17 0.91 0.24 0.89 0.23 0.73
nxCG (nxCG[50]) 0.96 0.98 1.00 0.98 0.92 0.17 0.92 0.24 0.93 0.23 0.76
ep/gr (MAep) 0.95 0.96 0.98 1.00 0.91 0.18 0.92 0.25 0.93 0.24 0.82
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Fig. 2. Correlation between run orderings generated by MAep (ep/gr) and MAP
(HiXEval) using the 55 submitted runs for the CO.Thorough retrieval strategy. The
Spearman correlation coefficient is 0.94.

also shows coefficients when the measures from the nxCG and ep/gr metrics
are compared with each other. The overall trend observed when pairs of these
measures are compared (in terms of how well they correlate) is also observed
when comparing the corresponding pairs of XCG and HiXEval measures. The
Spearman coefficient shows that there is a strong correlation (0.94) between
run orderings generated by MAep (ep/gr) and MAP (HiXEval) when comparing
mean average precision. The graph of Fig. 2 provides a detailed overview of
the observed correlation between these run orderings, showing that the biggest
differences in rankings occur with the best performing systems.

The observed correlations between the corresponding measures of HiXEval
and XCG (all greater than 0.9) show that similar run orderings are generated by
the two metrics.

Focussed Retrieval Strategy. The lower part of Table 4 shows Spearman
correlation coefficients calculated from the run orderings using the 44 submitted
runs for the INEX 2005 CO.Focussed retrieval strategy. The calculated corre-
lation numbers for the three nxCG measures and their corresponding HiXEval
precision measures are again greater than 0.9, with a similar trend to that ob-
served for the CO.Thorough strategy. However, the correlation coefficient is lower
for this strategy (0.82) when comparing mean average precision. Unlike for the
CO.Thorough strategy, there are strong correlations between MAep and each of
the three precision measures of HiXEval, whereas there is almost no correla-
tion between MAep and each of the three recall measures. This suggests that, for
the CO.Focussed retrieval strategy, the methodology used in creating the ideal
recall-base has an adverse effect on the overall recall, which seems to dramatically
influence the run orderings obtained from MAep measure of the ep/gr metric.
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Table 5. Spearman correlation coefficients calculated from the run orderings obtained
from pairs of evaluation measures using the 31 correctly submitted runs for the INEX
2005 CO.FetchBrowse-Article (upper part) and CO.FetchBrowse-Element (middle
and lower parts) retrieval strategies. Correlation scores between the MAep measure
(ep/gr) and the MAP measure (HiXEval) are shown in bold.

ep/gr HiXEval
Metric (measure) MAep Prec Rec MAP

CO.FetchBrowse-Article
(overlap=off,on)
ep/gr (MAep) 1.00 0.69 0.70 0.85

CO.FetchBrowse-Element
(overlap=off)
ep/gr (MAep) 1.00 0.90 0.88 0.95

CO.FetchBrowse-Element
(overlap=on)
ep/gr (MAep) 1.00 0.80 0.92 0.67

FetchBrowse Retrieval Strategy. The evaluation methodology for this re-
trieval strategy is different from those for the other two CO strategies in that two
separate evaluation results are reported: an article-level result and an element-
level result, the latter calculated by using both (off and on) overlap settings [3].
To obtain element-level results, in addition to MAP we report values obtained
by the following two HiXEval measures: Prec, which measures precision at final
rank for each article cluster, averaged over all clusters and then over all topics;
and Rec, which measures recall at final rank for each article cluster, also averaged
over all clusters and topics. To obtain article-level results with HiXEval, we used
the article-derived runs along with their corresponding relevance judgements,
which means that values for Prec and Rec refer to those for precision and recall
at final cut-offs (1500), respectively.

Table 5 shows Spearman correlation coefficients calculated from the run order-
ings using the 31 correctly submitted runs for the INEX 2005 CO.FetchBrowse
retrieval strategy. For article-level results, the calculated value for the Spearman
coefficient between MAep and MAP is 0.85. The probable cause for this behaviour
is that different methodologies are used by the two metrics to determine the pre-
ferred article answers; indeed, the ep/gr metric uses knowledge of the highest
scoring element within an article to obtain the ordering of the ideal article gain
vector, whereas articles are inspected on their own merit by HiXEval.

Table 5 also shows that, for element-level results, the overlap setting dramat-
ically changes the observed level of correlation between the rank orderings of
the two metrics. With overlap set to off, there is a strong correlation between
the two mean average precision measures. With overlap set to on there is little
correlation between MAep and MAP; however, we observe that in this case MAep is
better correlated with recall (0.92) than with precision (0.80). We believe that
the probable cause for this behaviour is that, unlike the case of the CO.Focussed
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retrieval strategy where overlap is also set to on, here the number of relevant ele-
ments that comprise the ideal recall-base for each article cluster is much smaller,
which in turn makes it easier for runs to achieve perfect recall for a given clus-
ter. The small correlation value between MAep and MAP, however, suggests that
the two metrics could have differently implemented the mean average precision
measure for this overlap setting.

4.2 CAS Sub-task

Four retrieval strategies are explored in the CAS sub-task: SSCAS, SVCAS, VSCAS,
and VVCAS; these differ in the way the target and support elements of a CAS topic
are interpreted [6]. We use the overlap=off setting for each evaluation measure
of nxCG, ep/gr, and HiXEval.

Table 6. Spearman correlation coefficients calculated from the run orderings obtained
from pairs of evaluation measures using 25 submitted runs for SSCAS, 23 runs for SVCAS
and VSCAS, and 28 runs for VVCAS retrieval strategies. Correlation scores between an
evaluation measure from the XCG family of metrics and its corresponding measure from
HiXEval are shown in bold.

nxCG ep/gr HiXEval
Metric (measure) 10 25 50 MAep P@10 R@10 P@25 R@25 P@50 R@50 MAP

SSCAS
(overlap=off)
nxCG (nxCG[10]) 1.00 0.97 0.75 0.69 0.82 0.95 0.62 0.98 0.60 0.92 0.58
nxCG (nxCG[25]) 0.97 1.00 0.84 0.66 0.81 0.94 0.69 0.97 0.68 0.95 0.55
nxCG (nxCG[50]) 0.75 0.84 1.00 0.57 0.80 0.79 0.92 0.77 0.91 0.90 0.53
ep/gr (MAep) 0.69 0.66 0.57 1.00 0.74 0.64 0.64 0.62 0.66 0.70 0.96

SVCAS
(overlap=off)
nxCG (nxCG[10]) 1.00 0.98 0.98 0.94 0.98 0.94 0.91 0.92 0.94 0.92 0.93
nxCG (nxCG[25]) 0.98 1.00 0.99 0.94 0.97 0.93 0.94 0.93 0.96 0.94 0.93
nxCG (nxCG[50]) 0.98 0.99 1.00 0.95 0.97 0.92 0.93 0.93 0.96 0.94 0.92
ep/gr (MAep) 0.94 0.94 0.95 1.00 0.93 0.86 0.84 0.88 0.89 0.91 0.95

VSCAS
(overlap=off)
nxCG (nxCG[10]) 1.00 0.97 0.96 0.83 0.98 0.76 0.95 0.74 0.94 0.71 0.88
nxCG (nxCG[25]) 0.97 1.00 0.99 0.86 0.96 0.73 0.98 0.72 0.97 0.71 0.91
nxCG (nxCG[50]) 0.96 0.99 1.00 0.86 0.94 0.75 0.97 0.75 0.97 0.74 0.92
ep/gr (MAep) 0.83 0.86 0.86 1.00 0.81 0.59 0.88 0.64 0.86 0.63 0.90

VVCAS
(overlap=off)
nxCG (nxCG[10]) 1.00 0.93 0.90 0.75 0.96 0.57 0.93 0.56 0.91 0.59 0.73
nxCG (nxCG[25]) 0.93 1.00 0.97 0.85 0.92 0.62 0.95 0.65 0.98 0.67 0.84
nxCG (nxCG[50]) 0.90 0.97 1.00 0.90 0.87 0.72 0.90 0.74 0.95 0.76 0.91
ep/gr (MAep) 0.75 0.85 0.90 1.00 0.72 0.72 0.75 0.76 0.84 0.75 0.91
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Table 6 shows Spearman correlation coefficients calculated from the run or-
derings using different numbers of submitted runs for each of the four INEX 2005
CAS retrieval strategies. We observe that there is a strong correlation between
the two metrics for the CAS sub-task, irrespective of the retrieval strategy used.
However, the observed correlation between each of the three measures of nxCG
with the two precision and recall measures of HiXEval changes depending on the
way the target element is interpreted. For the two strict CAS retrieval strategies
(SS and SV), nxCG seems to be more recall- than precision-oriented, whereas for
the vague CAS retrieval strategies the reverse is true. We suspect that, as with
CO.FetchBrowse-Element retrieval strategy, the fewer relevant elements com-
prising the recall-base for the two strict CAS strategies may have an impact on
the evaluation methodology of the nxCG metric.

5 Conclusions and Future Work

HiXEval addresses many of the concerns that have been raised in connection
with the XCG-based metrics. Its main features are simplicity, compatibility with
the well-understood measures used in traditional information retrieval, ability
to model different user behaviours, and most importantly, minimal reliance on
subjective decisions during evaluation. Indeed, if there was broad acceptance of
HiXEval, there would be no need for assessors to judge exhaustivity, as only
highlighting of relevant passages would be required. This would substantially
reduce the time taken to undertake the relevance judgements.

The HiXEval metric is based solely on the specificity dimension, which, as we
have shown through our analysis of the level of assessor agreement of the five
INEX 2005 topics, is much better interpreted by assessors than the definition
of the exhaustivity dimension. Moreover, our correlation analysis of the rank
orderings between HiXEval and the two XCG-based metrics has confirmed that
both metrics perform broadly the same task, and thus measure the same (or
similar) retrieval behaviour.

The correlation analysis has also identified the different orientations of the
XCG-based metrics; indeed, regardless of whether the level of overlap among re-
trieved elements is considered or not, in the case where the number of the so-
called ideal retrieval elements is rather small, the XCG metrics seem to be more
recall- than precision-oriented. Conversely, with a sufficient number of ideal re-
trieval elements in the recall-base, the two metrics are clearly precision-oriented.

In the future we intend to check the reliability and stability of HiXEval and
the two XCG metrics. We plan to undertake reliability tests for the HiXEval
metric, similar to the ones performed for XCG and the INEX-2002 metrics [5].
To test stability, we plan to measure significance and error rates by pursu-
ing a simplification of the methodology used by Sanderson and Zobel [9]. We
also plan to further investigate the observed differences on the best performing
systems.
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Abstract. There has been much debate over how to interpret the struc-
ture in queries that contain structural hints. At INEX 2003 and 2004,
there were two interpretations: SCAS in which the user specified target
element was interpreted strictly, and VCAS in which it was interpreted
vaguely. But how many ways are there that the query could be inter-
preted? In the investigation at INEX 2005 (discussed herein) four differ-
ent interpretations were proposed, and compared on the same queries.
Those interpretations (SSCAS, SVCAS, VSCAS, and VVCAS) are the
four interpretations possible by interpreting the target elements, and the
support elements, either strictly or vaguely. An analysis of the submitted
runs shows that those that share an interpretation of the target element
correlate - that is, the previous decision to divide CAS into the SCAS
and VCAS (as done at INEX 2003 and 2004) was sound. The analysis
is supported by the fact that the best performing VSCAS run was sub-
mitted to the VVCAS task and the best performing SVCAS run was
submitted to the SSCAS task.

1 Introduction

Does including a structural hint in a query make a precision difference and if so
how should we interpret it? At INEX 2005 the ad hoc track has been investigating
this question. Two experiments were conducted, the CO+S experiment, and the
CAS experiment.

In the CO+S experiment the participants were asked to submit topics with
content only (CO) queries containing just search terms, and optionally an addi-
tional structured (+S) query specified in the NEXI [10] query language. Given
these two different interpretations of the same information need it is possible to
compare the precision of queries containing structural hints to those that do not
for the same information need. The details of the CO+S experiment are beyond
the scope of this paper.

In a separate experiment participants were asked to submit topics containing
queries that contain content and structure (CAS) constraints specified in NEXI
[10]. These topics were used to determine how the structural hints, necessarily
present in a CAS topic, should be interpreted by a search engine. The two
extreme views are the database view that all structural constraints must be

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 58–71, 2006.
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upheld, and the information retrieval view that satisfying the information need
is more important than following the structural constraints of the query.

This contribution discusses the mechanics of the CAS experiment from the
topic submission process, the document collection, through to the evaluation
methods. The different tasks are compared using Pearson’s product moment
correlation coefficient showing that there were essentially only two tasks, those
that in previous years have gone by the name VCAS and SCAS. Further analysis
shows that of the tasks SSCAS is the easiest and VVCAS the hardest.

2 CAS Queries

Laboratory experiments in information retrieval following the Cranfield method-
ology (described by Voorhees [12]) require a document collection, a series of
queries (known as topics), and a series of judgments (decisions as to which doc-
uments are relevant to which topics). In element retrieval this same process
is followed - except with respect to a document element rather than a whole
document.

Content and structure queries differ from content only queries in so far as
they contain structural hints. Two types of structural hints are present, those
that specify where to look (support elements) and those that specify what to
return to the user (target elements). In INEX topic 258

//article[about(.,intellectual property)]//sec[about(., copyright law)]

the search engine is being asked to identify documents about intellectual prop-
erty and from those extract sections about copyright law. The target element is
//article//sec (extract //article//sec elements). The support elements are //ar-
ticle (with support from //article about intellectual property) and //article//sec
(and support from //article//sec about copyright law). Full details of the syntax
of CAS queries is given by Trotman and Sigurbjörnsson [10]. The applicability
of this language to XML evaluation in the context of INEX is also discussed by
Trotman and Sigurbjörnsson [11].

2.1 Query Complexity

The simplest CAS queries contain only a single structural constraint. Topic 270,

//article//sec[about( ., introduction information retrieval)]

asks for //article//sec elements about “introduction information retrieval”. A
more complex (multiple clause) query can be decomposed into a series of single
constraint (single clause) queries (or child queries). Topic 258,

//article[about(.,intellectual property)]//sec[about(., copyright law)]

could be written as a series of single constraint queries, each of which must be
satisfied. In this case it is decomposed into topic 259,
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//article[about(.,intellectual property)]

and topic 281,

//article//sec[about(., copyright law)]

if both hold true of a document then the (parent) query is true of that document
- and the target element constraints can be considered. The same decomposition
property holds true for all multiple constraint CAS topics (so long as the target
element is preserved) - it is inherent in the distributive nature of the query
language.

Having separate parent and children topics makes it possible to look at dif-
ferent interpretations of the same topic. As a topic is judged according to the
narrative the judgments are by definition vague. Strict conformance of these
judgments to the target element can be generated using a simple filter. This is
the approach taken at INEX 2003 and 2004 for the so-called SCAS and VCAS
tasks. But what about the sub-clauses of these topics? Should they be interpreted
strictly or vaguely? With the judgments for the child topics, vague and strict
conformance to these can also be determined. With the combination of child and
parent judgments it is possible to look at many different interpretations of the
same topic.

2.2 Topic Format

INEX captures not only the query, but also the information need of the user.
These are stored together in XML. Methods not dissimilar to this have been
used at TREC [2] and INEX [1] for many years. As an example, INEX topic 258
contains several parts all discussing the same information need:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="258" query_type="CAS" ct_no="72">
<InitialTopicStatement>
I have to give a computer science lesson on intellectual property
and I’m looking for information or examples on copyright law to
illustrate it. As I’m looking for something which is specific, I
don’t think I can find a whole article about it. I’m consequently
looking for section elements.
</InitialTopicStatement>
<castitle>
//article[about(.,intellectual property)]//sec[about(., copyright law)]
</castitle>
<description>
Return sections about copyright law (information or examples) in an
article about intellectual property.
</description>
<narrative>
I have to give a computer science lesson on intellectual property,
and I’m looking for information or examples on copyright law to
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illustrate it. More precisely, I’d like to have information about
authors rights and how to protect your creation. As I’m looking for
something which is specific, I don’t think I can find a whole
article about it. I’m consequently looking for section elements.
Information or examples can concern copyright on software,
multimedia or operating systems. Copyright on literary work can help
but only for examples. Information concerning domain names and
trademarks is not relevant.
</narrative>
</inex_topic>

• <InitialTopicStatement> a description of why the user has chosen to use
a search engine, and what it is that the user hopes to achieve.

• <castitle> the CAS query specified in the NEXI language [10].
• <description> a natural language expression of the information need using

the same terms as are found in the <castitle>. This element is used by the
natural language track at INEX [13].

• <narrative> a description of the information need and what makes a result
relevant. When judgments are made they are made against this description so
it is important that it precisely describes the difference between relevant and
irrelevant results. For experiments that additionally take into account the
context of a query (such as the interactive track [8]), the purpose for which
the information is needed (the work-task) is also given in the narrative.

Both the parent query and the child queries are stored in this way - but an
additional element, the <parent> element, is present in child topics. This el-
ement stores the castitle of the child’s parent. This method of linking children
to parents was chosen over using identifiers as it was considered less likely to be
prone to human input error.

2.3 Query Interpretation

A contentious point about CAS queries is the interpretation. The strict view
is that the structural hints are constraints and the search engine should follow
them to ensure returning elements that satisfy the user. The vague view is that
the structural hints are hints and can be down-played so long as a returned
element is relevant in the mind of the user (it satisfies the information need).

A single clause query might be interpreted strictly, or vaguely - that is the
constraint might be followed or can be ignored. If, for example, a user asks
for an article abstract about “information retrieval”, then perhaps an article
introduction might just as well satisfy the need - or perhaps not.

With multiple clause queries, there are many possible interpretations. In the
CAS experiment at INEX 2005, the strict and vague interpretations are applied
to both the target element, and the support elements. This gives four interpre-
tations written XYCAS where X is the target element and Y is the support
element, and either X or Y can be S for strict or V for vague. Those interpreta-
tions are:
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• VVCAS: The target element constraint is vague and the support element
constraints are vague. This is the information retrieval view of the topic.

• SVCAS: The target element constraint is strict, but the support element
constraints are vague.

• VSCAS: The target element constraint is vague, but the support element
constraints are followed strictly.

• SSCAS: Both the target element constraint and the support element con-
straint are followed strictly. This is the database view.

3 Document Collection

The document collection used in the experiments was the INEX IEEE document
collection version 1.8. This collection contains 16,819 documents taken from
IEEE transactions and magazines published between 1995 and 2004. The total
size of the source XML is 705MB. This is the latest version of the INEX collection
at publication date.

4 Data Acquisition

This section discusses the acquisition of the queries from the participants and
the verification that they are representative of previous years. It also discusses
the acquisition of the judgments and the construction of the different judgment
sets.

4.1 Query Acquisition

The document collection was distributed to the participating organizations. They
were then each asked to submit one CAS topic along with any associated single
clause child-topics (should they exist). These topics then went through a se-
lection process in which queries were parsed for syntactic correctness, semantic
correctness, consistency, and validated against their child topics. A total of 17
queries passed this selection process.

The breakdown of CAS topic complexity (excluding child-topics) for each of
INEX 2003, 2004, and 2005 is given in Table 1. From visual inspection it can
be seen that the breakdown in 2005 is representative of previous years, most
queries contain two clauses with approximately the same number of three and
one clause topics. In 2005 there were no topics with more than 3 clauses.

Table 1. A Breakdown of the complexity of INEX 2005 CAS topics shows that they
are representative of previous years

Clauses 1 2 3 4+
2003 7 (23%) 12 (40%) 6 (20%) 5 (17%)
2004 4 (12%) 22 (65%) 4 (12%) 4 (12%)
2005 3 (18%) 12 (71%) 2 (12%) 0 (00%)
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Table 2. The 17 topics and the topic numbers of their children

Parent Children Parent Children Parent Children
244 245, 246 258 259, 281 270
247 248, 249, 276 260 275 274, 273
250 251, 252 261 262, 263 280 277, 278, 279
253 254, 255 264 282, 283 284 266, 285
256 272, 271 265 267, 268 288 242, 243
257 269 286, 287

4.2 Child Topics

Each topic and child topic was given a unique identifier (stored in the topic id
attribute of the inex topic tag). Table 2 shows which topics are parent topics
and which topics are their children. Topic 258, for example, has topics 259 and
281 as children whereas topic 260 is a single clause query and has no children.

It may appear at the onset that these child topics can be used as part of the
evaluation giving a total of 47 topics. This, however, is not the case. The guide-
lines for topic development [7] identifies that for evaluation purposes queries must
be diverse, independent, and representative. Using both the parent and the chil-
dren topics for computing performance violates the independence requirement -
and weights evaluation in favor of longer topics (which have more children).

Using just the child topics, and discarding the parents, violates the requirement
that topics are representative. In Table 1, the breakdown of topics from previous
years is shown. Most topics have two clauses, whereas child topics (by definition)
have only one. The children, without their parents, are not representative.

4.3 Judgment Acquisition

The topics and child-topics were distributed to the participants. Each partici-
pating group was invited to submit up to two runs for each CAS task. At least
one was required for VVCAS. A run consisted of at most 1,500 ranked results
for each parent and child topic. There were no restrictions on which part of the
topic was used to generate the query - participants were permitted to use the
narrative, or description, or castitle if they so chose.

These results were then pooled in a similar manner to that used at TREC
(and shown to be robust there by Zobel [15]). The details of the INEX pooling
method are give by Piwowarski and Lalmas [6] and a discussion of the robustness
is provided by Woodley and Geva [14].

The pool identifies which documents and elements the search engines consid-
ered relevant to the query. Using a graphical interface (the 2005 version of X-Rai
[5, 6]) to the document collection, the original author of the query (where possi-
ble) was asked to identify which elements of which documents in the judgment
pool were, in fact, relevant to the information need. Assessors first highlighted
relevant passages from the text, and then they assigned relevance values to all
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elements in this region on a three points scale: highly exhaustive, partly ex-
haustive, or too small. This assessment was performed for the parent topics in
isolation of the child topics - and not necessarily by the same assessor.

As a topic may contain many different interpretations of the information
need (for example the description and the castitle) all judgments were made
with reference to the description contained in the topic narrative.

4.4 CAS Relevance Assessments

In a separate experiment the consistency of the judgments is being measured
across multiple assessors. This is done by asking two or more judges to assess
the same topic, without knowledge of the other’s decisions. Of the CAS topics,
those listed in Table 3 were multiple-judged.

The consequence of this multiple assessment process is that there is no single
set of relevance assessments. Inline with INEX 2004, the assessments are divided
into two groups: set-a, and set-b (see Pehcevski et al. [4] and Trotman [9] for a
discussion of the 2004 results of this experiment). The INEX 2005 assignment
was made based on proportion of completion at the date the first relevance as-
sessments were released. Those judgments that, from visual inspection, appeared
most complete were assigned to set-a, while the other was assigned to set-b. In
this way set-a, the set used to generate the official results, was most complete
and therefore most reliable.

Internal to X-Rai (the online assessment tool), each assessment of each topic
by each judge is given an internal identifier - the pool id. Table 3 also shows
which pool ids were assigned to which judgment set.

Table 3. Topics assessed by more than one assessor. Listed for each set against each
topic is the pool-id of the assessments.

Topic
Pool

Set-a Set-b
(official) (other)

261 350 362
244 354 358
250 356 369
258 289 360

4.5 CAS Relevance Sets

From set-a, four sets of judgments were generated, one for each of the four CAS
interpretations - each derived from the same initial set of judgments.

• VVCAS: The assessments as done by the assessors (against the narrative).
These assessments are unmodified from those collected by INEX from the
assessor.
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• SVCAS: Those VVCAS judgments that strictly satisfy the target element
constraint. This set of judgments was computed by taking the VVCAS judg-
ments and removing all judgments that did not satisfy the target element
constraint. This was done by a simple matching process. All those elements
that were, indeed, the target element were included and those that were not
were removed. Topic 260 is an exception. In this case the target element is
specified as //bdy//*. To satisfy this constraint all descendants of //bdy
(excluding //bdy) are considered to strictly comply.

• VSCAS: A relevant element is not required to satisfy the target constraint,
however the document must satisfy all other constraints specified in the
query. That is, for a multiple clause topic, an element is relevant only if it
comes from a document in which the child-topics are strictly adhered to. In
all except two topics, given the conjuncton of documents relevant to the child
topics, this is any relevant element from the VVCAS set that comes from
this conjunction. In one exception (topic 247), this conjunction is replaced
with a disjunction. In the other exception (topic 250) there are (presently)
no judgments as the assessment task has not been completed.

• SSCAS: Those VSCAS judgments that satisfy the target element con-
straint. These are computed from the VSCAS judgments in the same way
that SVCAS judgments are computed from VVCAS judgments - strict con-
formance to the target element.

The guidelines for topic development [7] identify groups of tags that are equiv-
alent. For example, for historic paper publishing reasons the sec, ss1, ss2 and
ss3 tags are all used to identify sections of documents in the collection. The
strict conformance to a given structural constraint occurs with reference to the
equivalence list - //article//bdy//ss1 strictly conforms to //article//sec.

These relevance sets are considered to be the full recall base for each inter-
pretations of CAS. Different metrics and quantizatons functions could further
reduce the relevance sets. For example, in the case of struct quantization only
those elements that conform to the interpretation of CAS and further conform
to the interpretation of strict are considered relevant.

5 Measurement

The official metric used to report the performance of a system at INEX 2005 is
MAep, the mean average nxCG rank at 1500 elements. This measure is described
by Kazai and Lalmas [3]. The results (produced using xcgeval) for the INEX 2005
CAS task are available from INEX. There were 99 runs submitted to the CAS
tasks, of which 25 were SSCAS, 23 SVCAS, 23 VSCAS, and 28 VVCAS1.

Of the 17 topics used for evaluation (the parent topics of Table 2) judgments
currently exist for only 10 topics - at the time of writing the assessment task
had not been completed for the other 7 topics. Of those 10 topics, only 7 have
any elements that strictly conform to their child topic structural constraint. The
comparison of systems herein is based only on these topics.
1 Submissons version 1 and judgments version 7 are used throughout.
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Table 4. Number of relevant elements for each topic using generalised quantization

Topic SSCAS SVCAS VSCAS VVCAS
253 0 23 0 156
256 492 724 1431 2101
257 96 96 711 711
260 5159 5159 5264 5264
261 0 59 0 4437
264 6 40 155 1272
265 0 40 0 211
270 35 35 850 850
275 111 183 12870 16965
284 2 111 326 14265

Table 5. Number of relevant elements for each topic using strict quantization

Topic SSCAS SVCAS VSCAS VVCAS
253 0 0 0 11
256 139 162 198 228
257 0 0 0 0
260 66 66 66 66
261 0 0 0 2
264 0 0 12 44
265 0 0 0 1
270 1 1 2 2
275 18 22 330 424
284 0 5 4 196

In Table 4 and Table 5 the number of relevant elements for each topic of
each task is shown. The judgments for strict quantization are highly sparse -
for the SSCAS task, there are only 4 topics with highly specific and highly
exhaustive judgments. It does not seem reasonable to draw any conclusions from
only 4 topics so the remainder of this analysis applies to only the generalized
quantization of results.

By taking all runs submitted to any CAS task and correlating the performance
on one task to the performance on another (say, VVCAS with SSCAS), it is
possible to see if a search engine designed for one interpretation also performs
well on other interpretations (and therefore if there is any material difference in
the tasks). That is, if a search engine is designed to answer in one way but the user
expects results in another, does it matter? Taking all the CAS runs (including the
“unofficial” runs) the IBM Haifa Research Lab run VVCAS no phrase no tags
submitted to the VVCAS task performs best using the VVCAS judgments (with
a MAep score of 0.1314), but if the user need included a strict interpretation of
the topic (it was evaluated using the SSCAS judgments) then it is at position
50 with a score of 0.0681.
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By comparing the performance of runs submitted to each task it is possible
to determine if one task is inherently easier, or harder, than the others. With a
harder task there is more room for improvement - further investigation into this
task might result in improvements all-round.

5.1 Do the Judgment Sets Correlate?

Table 6 shows the Pearson’s product moment correlation coefficient computed
for all runs when scored at each task. Scores close to 1 show a positive correlation,
those close to -1 a negative correlation and those at 0 show no correlation.

It is clear from the table that VVCAS and VSCAS are strongly correlated.
A search strategy that performs well at one task performs well at the other.
SSCAS and SVCAS, both with a strict interpretation of the target element are
less strongly correlated. There is little correlation between a strict interpretation
of the target element and a vague interpretation of the target element (SVCAS
and VSCAS, for example).

Figure 1 shows this correlation for the vague target element tasks. There is
a cluster of best-scoring runs at the top-right of the graph. They are runs that
have performed well at both VVCAS and VSCAS. These four runs are those
from IBM Haifa Research Lab. Although different runs perform best on the

Table 6. Pearson’s product moment correlation coefficient between each CAS task

SSCAS SVCAS VSCAS VVCAS
SSCAS 1.0000 0.8934 0.4033 0.3803
SVCAS 0.8934 1.0000 0.3409 0.3768
VSCAS 0.4033 0.3409 1.0000 0.9611
VVCAS 0.3803 0.3768 0.9611 1.0000
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Fig. 1. Plot of performance of all submitted runs using VVCAS and VSCAS shows a
strong correlation of one to the other



68 A. Trotman and M. Lalmas

Performance of Strict Target Tasks

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500
SSCAS (MAep)

SV
C

A
S 

(M
A

ep
)

Fig. 2. Plot of performance of all submitted runs using SVCAS and SSCAS shows a
strong correlation of one to the other
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Fig. 3. Plot of performance of all submitted runs using VVCAS and SSCAS shows
little correlation of one to the other

VVCAS and VSCAS task, both “best” runs were submitted to the VVCAS task
- providing further evidence of the correlation of the two tasks.

Figure 2 shows the same for the strict target element tasks. The cluster is
not seen. The best performing run measuring on the SVCAS task was submit-
ted to the SSCAS task (again IBM Haifa Research Lab). These same runs were
only bettered by the four from the University of Tampere when measured for
the SSCAS task. Although Tampere produced runs that performed well at the
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SSCAS task and not at the SVCAS task, IBM Haifa Research Lab produced runs
that performed well at both tasks. Again further evidence of the correlation of
the two tasks.

Figure 3 shows the performance of SSCAS against VVCAS. It is clear from
this figure that those runs that perform well at one task do not perform well at
the other. It appears, from visual inspection, that they are average performers
at each other’s tasks.

5.2 Tasks Complexity

For each task the performance (MAep) of each of the top performaing 21 runs
submitted to that task was computed. This number was chosen because different
numbers of runs were submitted to each task, and for all tasks there were at
least 21 runs with a non-zero score. Table 7 presents the performance of the best
run, the mean computed over all runs submitted to the task, and the worst run
submited to each task. It can be seen that the best performing run was submitted
to the SSCAS task, and for that task the average run performs better that the
average run from other tasks. From this we deduce that the SSCAS task is easier
than the other tasks. This task may be easiest because the required structural
constraints are specified explicitly in the query and the search engine can use
this as a filter to remove known non-relevant elements from the result list.

Normally it is invalid to measure the performance of two different search en-
gines by measuring the performance of one on one collecion and the second on
a second collection (or set of topics, or judgments). In this experiment the doc-
ument collection and topics are fixed, the judgments are derived from a single
common source, and mean performance across several search engines is com-
pared. We believe this comparison is sound.

Table 7. Mean performance of top 21 runs from each task

SSCAS SVCAS VSCAS VVCAS
Mean 0.1285 0.0832 0.0628 0.0690

Std Dev 0.0510 0.0484 0.0439 0.0310
Best 0.2343 0.1922 0.1508 0.1314

Worst 0.0381 0.0292 0.0039 0.0208

6 Conclusions

The Pearson’s correlation shows that there are only two different interpretations
of the query, those with a strict interpretation of the target element and those
with a vague interpretation of the target element (the database and the infor-
mation retrieval views). It is possible to ignore the interpretation of the child
elements and concentrate on only the target elements. In previous years, INEX
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has made a distinction between strict and vague conformance to the target ele-
ment, but has disregarded conformance to child constraints (the so-called SCAS
and VCAS tasks). This finding suggests the experiments of previous years did,
indeed, make the correct distinction. Checking child constraints does not appear
worthwhile for content-oriented XML retrieval.

The vague task has proven more difficult than the strict task. Strict confor-
mance to the target element can be computed as a filter of a vague run - from
those vague elements, remove all that do not conform to the target element con-
straint. The vague interpretation of CAS is a better place to concentrate research
effort.

If the CAS task continues in future years, a single set of topics, without
the child topics is all that is necessary for evaluation and participants should
concentrate on the vague interpretation of topics.
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Abstract. Retrieving information from heterogeneous data sources in
a flexible manner and within a single (database) framework is still a
challenge. In this paper we present several extensions of our prototype
database system TIJAH developed for structured retrieval. The exten-
sions are aimed at modeling vague selection of XML elements and image
retrieval. All three levels (conceptual, logical, and physical) of the TIJAH
system are enhanced to support the extensions. Additionally, we analyze
different ways of removing overlap and explain how structural informa-
tion can be used for relevance feedback.

1 Introduction

In this paper we discuss our participation at INEX 2005 with TIJAH, a three-
level database system for structured information retrieval. The TIJAH system
[12, 13, 15] is developed as a transparent XML-IR database system consisting of
conceptual, logical, and physical levels. TIJAH was originally developed to han-
dle queries with the strict selection of XML elements, specified in the NEXI query
language [18] and to reason about textual information. This year we extended it
in three directions: toward handling vague specification of XML elements in the
query (similar to [5]), toward supporting retrieval from heterogeneous domains
(images and videos), following the guidelines from multimedia retrieval database
systems [3], and toward supporting different approaches to remove overlap. More-
over, we continue with the relevance feedback experiments [16] using the TIJAH
system.

The first point that we want to address in this paper is handling imprecise
specification of elements in the XML search. Similarly to users giving a num-
ber of terms as hints for searching within a document, XML elements specified
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within the query need not be considered as a strict requirement but as a hint
for structural search. Therefore, when formulating a query the user can state
that the search (support) element or answer (target) element should be treated
as a hint or as a constraint in the retrieval process. To support vague search we
introduced vague element selection as a concept in our TIJAH system.

On the other hand, to cope with the heterogeneous data sources (text and
images) each level of the TIJAH system is extended with new features that can
express image search. Image search is handled in the same framework as text
search: At the conceptual level where NEXI query language is extended for query
by example image search, and at logical level where new operators are introduced
in the Score Region Algebra (SRA) [13]. However, due to different nature of the
domain data, images are stored and handled in a different manner than textual
XML data at the physical level.

We also present our approaches for removing overlap and for relevance feed-
back. To remove overlapping elements from the result set (for the user not to see
the same information twice), we define a utility function that intends to capture
the amount of useful information each element contains. Once we know the util-
ity value of each node, we remove overlap by returning the most useful node in
each path. Our relevance feedback approach uses the structural characteristics
of the relevant elements to update the priors in a language modeling framework.

The paper is organized as follows. The following section explains the exten-
sions introduced in the TIJAH system to model vague XML element specifica-
tion. Section 3 details our approach for image retrieval. The overlap and relevance
feedback approaches are discussed in Section 4 and 5 respectively. We wrap-up
the paper with the results from the experiments performed for each track and its
sub-tasks in Section 6 and with conclusions and future directions in Section 7.

2 Vague Node Selection

This section details the motivation and the implementation of vague selection of
nodes in our three-level database framework. We explain the extensions on each
level aimed for vague search on elements.

2.1 Vague Element Node Selection in NEXI

Instead of extending our conceptual parser for rewriting content-and-structure
(CAS) and content-only plus structure (COS) queries into SV, VS, and VV CAS
and COS queries (SSCAS and SSCOS are equal to CAS and COS in our case),
where prefix ‘S’ denotes strict and ‘V’ vague specification of target and support
elements, we decided to extend the NEXI grammar with one extra symbol ‘∼’.
The ‘tilde’ symbol is used in front of the element name in the query specifica-
tion, denoting that the element name does not have to be strictly matched in
the query evaluation. We support this decision by arguing that the user should
be responsible for stating his confidence in the knowledge of the hierarchical
organization of the data he is querying, or whether he is certain or not what the
element name is in which he wants to search for information.
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Since we decided to extend the NEXI syntax with the vague selection we
had to manually rewrite the queries for each CAS and COS scenario except the
SSCAS and SSCOS. For example, the (SS)CAS query 225:

//article[about(.//fm//atl, "digital libraries")]
//sec[about(.,"information retrieval")]

is rewritten into three variants:

– SVCAS: //article[about(.//∼fm//∼atl, "digital libraries")]

//sec[about(.,"information retrieval")]

– VSCAS: //article[about(.//fm//atl, "digital libraries")]

//∼sec[about(.,"information retrieval")]

– VVCAS: //article[about(.//∼fm//∼atl, "digital libraries")]

//∼sec[about(.,"information retrieval")]

We decided not to consider the ‘article’ element as a vague element in case it is
not the target element or it is not the element in which the about search should
be performed, as in these cases the ‘article’ element just serves as a focusing
element for deeper search in the XML tree.

Vague element selection can be treated similarly as a query expansion on
terms in traditional IR. For example, if a user searches for the term ‘conclusion’,
he might also be satisfied with terms ‘decision’, ‘determination’, ‘termination’, or
‘ending’ in the answer. In structured documents, if a user asks for ‘car’ elements,
he would probably not mind getting ‘auto’ or ‘vehicle’ elements as an answer.
The problem of element name matching is studied in the research area of schema
matching and numerous techniques exist that try to resolve this problem (see [4]
for survey). However, we decided to simplify the vague element name search task
and use the results from INEX 2004 assessments to find the expanded element
names. We define the list of expanded element names based on the list of element
names assessed as relevant in INEX 2004 assessments process. The lists that we
exploit in this paper, termed element name expansion lists are the following1:

– One manual set of lists with the default score 0.55, based on 2004 experiments
(for the complete lists see [14]). For example, sec expansion list looks like:
{sec, abs, fm, vt, p, article, bdy, bm, app}. The lists are formed
out of highly exhaustive elements in the assessments list and by making the
lists symmetric in terms of adding the most useful IEEE collection element
names, such as sec,p,abs,..., to the expanded name list of other element
names that are in the particular expanded element name list. For example,
since for the abs element name, the kwd element name is in its expanded
list, abs is added to the kwd expansion list.

– One set of lists automatically generated out of assessments with marginal,
fair, or high exhaustivity and specificity. The default score is based on a
number of relevant elements of that specific name, normalized by a total
number of relevant elements, for all distinct target elements. For example, if
5 out of 50 elements assessed as relevant for sec answer element in the 2004
assessments set are p elements than the default score for p elements is 0.1.

1 A more exhaustive set of expansion lists can be found in [14].
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2.2 A Complex Selection Operator for Vague Node Selection

The logical level is based on Score Region Algebra – SRA [13]. The SRA data
model consists of a set of regions, each defined by its start (s), end (e), type
(t), name (n), and score (p). The operators in SRA are selection operators
(σn=name,t=type(R), σ�num(R), R1 � R2, and R1 � R2), score computation op-
erator (R1 �p R2), score combination operators (R1 �p R2 and R1 �p R2), and
score propagation operators (R1 � R2 and R1 � R2). Retrieval models are trans-
parently implemented using abstract functions for score computation (f�), com-
bination (⊗ and ⊕), and propagation (� and �) [13].

The vague node selection at the conceptual level (NEXI) is translated into
complex vague node selection operator at the logical level. The operator is de-
fined in SRA as a union of all XML element regions that match the names of
the ‘expanded name regions’ within the element name expansion list. By default
all ‘expanded regions’ are down-weighted by a predefined factor. The definition
of the operator is as follows:

σ
expansion(class)
n=name,t=type (R1) := {(r1.s, r1.e, r1.n, r1.t, r.p) | r1 ∈ R1 ∧ r1.t = type

∧ (r1.n, r.p) ∈ expansion(class, name)} (1)

Here expansion(class) is a set that contains all the expansions for all the region
names in one expansion class, where expansion list for each region name is:

expansion(class, name) := {(ex n1, ex w1), (ex n2, ex w2), ..., (ex nn, ex wn)}
Here ex ni is a expanded element name and ex wi is a real number in the range
[0, 1] denoting the down-weight factor. The operator σ

expansion(class)
n=name,t=node (R1) assigns

name (ex n) and score (ex w) values to the region name (n) and score (p) based
on the name and score values in the expansion list expansion(class, name).

For the vague selection we use the fusion of equivalence classes [11] (eq class)
and our manual and automatic INEX 2004 expansion element name lists. This
is done in such way that every expanded element name in these lists that has the
equivalent name in the eq class name part is also expanded with the eq class
equivalent names for name. This expansions are termed manual55 for manual
run and mm for the automatic one. Therefore, the eq class selection on section
elements can be expressed as σ

expansion(eq class)
n=‘sec’,t=node (R), and vague node selection

(∼sec), using manual expansion list, can be transformed into the next SRA
operation σ

expansion(manual55)
n=‘sec’,t=node (R). In such a way we can transparently define the

set of expanded nodes and their respective weights and use them for vague node
selection in a vague element name selection retrieval scenarios.

2.3 The Implementation of the Vague Selection Operator

At the physical level, since we are working with the known INEX IEEE data col-
lection, and as we used static INEX equivalence element name list and expansion
element name lists based on INEX 2004 assessments, we decided to replicate the
lists and store them as tables at the physical level, i.e., in MonetDB [1]. Thus,
we have three tables with (entity name, expansion name, expansion weight) for
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manual55, mm, and eq class lists. The complex selection operator is then im-
plemented as an additional MIL function (MIL stands for MonetDB Interpreter
Language and is used to implement operators in TIJAH [15]) that uses data
from these tables.

For example, the vague name selection operator on region table R and the
‘expansion regions’ table S for the manual55 element names in the expansion
list, in relational algebra can be defined as:

πr.s,r.e,r.n,r.t,s.weight(σs.n=name(S) �s.n=r.n (σr.t=node(R)))

Retrieval Models. We based the instantiation of retrieval models on the best
models used for flat-file information retrieval, as well as XML retrieval: language
models [7], the Okapi/Inquery model [2, 17], and Garden Point XML (GPX) [6].
For the relevance score computation we used language modeling in most of the
cases (Equation 2) and Okapi and GPX in some of them (details of these models
can be found in [13]). We used sum for upwards (f�(r1, R2)) and downwards
(f�(r1, R2)) score propagation (Equation 3). Abstract score combination oper-
ators ⊗ and ⊕ are implemented both as simple sum, or as product and sum,
except in the case of the GPX model where the instantiation is given in Equa-
tion 4. In Equations 2 to 4: r1 ≺ r2 ≡ r1.s > r2.s∧r1.e < r2.e, size(r) = r.e−r.s−1,
and Root is the collection root region.

fLM
� (r1, R2) = p1 · (λ

∑
r2∈R2|r2≺r1

p2

size(r1)
+ (1 − λ)

|R2|
size(Root)

) (2)

f�(r1, R2) = p1 ·
∑

r2∈R2|r1≺r2

p2 , f�(r1, R2) = p1 ·
∑

r2∈R2|r2≺r1

p2 (3)

p1 ⊗ p2 = p1 ⊕ p2 =

⎧⎨
⎩

p1 + p2 if p1 = 0 ∨ p2 = 0

A · (p1 + p2) otherwise
(4)

3 Image Similarity Search

To enable search on multimedia collection (provided by Lonely Planet) we also
introduced extensions to the TIJAH system defined along three levels of our
prototype DB. Also, we extended the NEXI syntax with an extra token ‘src:’
that defines the location of the source image with which the destination image
should be matched. Therefore, in multimedia query 11:

//destination[about(.//image, fruit vegetables src:/images/BN2787_4.jpg)]
//point_of_interest[about(., food fruit vegetable market)]

the first about contains a request for image similarity search. The destination
image that need to be matched is images/BN2787 4.jpg. In the preprocessing
step, the ‘src:’ part of the about is transformed into about image and its relative
path given in the NEXI ‘src:’ specification is resolved into the path to the
location where the data for image matching is stored. The image about command
is then forwarded to the logical level.
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3.1 Image Search in SRA

To express image search in SRA we extended the SRA operator set with the
additional operators σi and �i

p. The σi operator has similar definition as basic
score region algebra operator σn=name,t=type(R), except that the score p is now
computed by a call to an external function f i. The function f i uses information
extracted from the sample image and the image that should be selected and it
computes the score of an image region based on similarity between the sample
image and the selected image:

σi≈sample
n=name (R1) := {(r1.s, r1.e, r1.n, r1.t, f

i(r2.n, sample) | r1 ∈ R1 ∧ ∃r2 ∈ C

∧ r2 ≺ r1 ∧ r2.t = attr val ∧ r1.t = attr ∧ r1.n = name} (5)

Here sample is the location of the sample image data specified with the ‘src:’
statement in the NEXI query, resolved in the preprocessing step, C is a set of
all regions in the database, attr is the attribute node, and attr val is value of
the attribute attr.

The operator �i
p is defined in the same way as �p operator (for the exact

definition see [13]), except that it allows computing score of a region containing
images with the usage of different scoring formula than for terms (e.g., given
in Equation 2). Therefore, the about image in the multimedia query 1 is trans-
formed into the next SRA expression:

σn=‘image′,t=node(C) �
i
p σi≈‘BN2787 4.jpg’

n=file name (C)

3.2 Implementation of Image Search

At indexing time, we estimated a generative probabilistic model of each of the
images in the collection (see below); the model parameters are stored in separate
tables in the database. In addition, we constructed a table that links the image
identifiers to the corresponding nodes in the collection tree. The image selection
operator is implemented as a new MIL function that computes the similarity
between each collection image model and the example image.

Retrieval Model. Similarity between example images and collection images
is estimated using Gaussian mixture models (GMM). To this end, each of the
images in the collections (ω(ni)) is modeled as mixtures of Gaussians with a
fixed number of components K:

P (x|ω(ni)) =
NK∑
k=1

P (Ki,k) G(x, μi,k, Σi,k), (6)

where NK is the number of components in the mixture model, Ki,k is compo-
nent k of class model ω(ni) and G(x, μ, Σ) is the Gaussian density with mean
vector μ and covariance matrix Σ. The score of an image node given an example
image from a query, is determined by the likelihood that the corresponding model
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generates the feature vectors (X = {x1, x2, . . . ,xn}) representing the example
image. Like in the LM case for text, we interpolate with a background model
based on collection statistics:

f i(ni, sample) =
∏

x∈Xsample

[λ · P (x|ω(ni)) + (1 − λ) · P (x)] (7)

The feature space of the vectors x is based on the DCT coefficients2 obtained
from 8x8 pixel blocks. For details of the feature vectors and the GMMs, see [19].
Equation 7 is used for similarity computation in the image selection operator
σi≈sample

n=name (R1). In image containment (R1 �i
p R2) the result score is computed

as a product of scores of the region in the left and region in the right operand.

4 Overlap Removal

In an XML retrieval setting, to identify the most appropriate elements to return
to the user is not an easy problem. IR systems have difficult task to find out
which are the most exhaustive and specific elements in the tree and return only
these to the user, producing result lists without overlapping elements. So far,
most of the approaches presented to remove overlap consist of post-filtering the
ranked lists in one way or another. Basically, by selecting the highest scored
element from each of the paths.

This would be a good strategy if the retrieval model would consider, when
ranking, not only the estimated relevance of the XML element itself but also its
usefulness compared to other elements in the same path. However, since most
retrieval models rank elements independently, it is not always the case that
the highest scored element is the most appropriate unit to return to the user.
Therefore, the strategies to remove overlap that rely too much in the retrieval
model scores are not always the most effective (see Section 6.1).

In the approach presented in this paper, we define an utility function that
intends to capture the amount of useful information each element contains. This
function is equivalent to giving an utility prior to the retrieval model scores. Our
goal is to help the retrieval model to give a better estimation of the usefulness
of each node and, in consequence, gain effectiveness when removing overlap.

To model the usefulness of a node, three important aspects need to be con-
sidered: (1) the relevance score estimated by the retrieval model, (2) the size of
the element, and (3) the amount of irrelevant information it contains. For exam-
ple, if a highly relevant element is very small, the amount of useful information
it carries is also small. Whereas if a not so high scored element is longer, the
amount of useful information that the user will read is larger. Thus, the decision
of which elements are most useful should be related not only to the retrieval
model scores but also to its length. That is why length normalization techniques
are also used in XML Retrieval [9]. Similarly, whether to return a certain element
or to return some of its children should be decided according to the amount of
irrelevant information the user will have to read if the parent is returned.

2 Discrete Cosine Transform, captures both color and texture information.
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To implement these ideas, we define an utility function that estimates the
usefulness of a node as the product of the amount of relevant information that
element contains, the element’s score, and its length. Formally, for each of the
XML nodes (E), the utility value is estimated as:

U(E) = (1 −
∑

i∈nrch(E) size(i)

size(E)
) · P (E) · size(E) (8)

Where P (E) is the estimated relevance score given by the retrieval model and
nrch(E) is the set of non relevant children of E. Those children in which the
amount of relevant information (estimated as the product of the element’s length
and score, P (E) ∗ size(E)) is lower than a threshold (quality threshold). This
utility function is equivalent to giving a length prior to the elements, but instead
of using the whole element’s length as prior, we try to estimate the size of the
relevant information contained in it.

5 Relevance Feedback

The main idea of any relevance feedback strategy is to use the knowledge of
relevant items to retrieve more relevant items. So far, research has concentrated
on using content-related information from the known relevant elements. However,
for XML retrieval the structural characteristics of the relevant elements might
also play an important role. Following the lines of what we started last year [15],
we investigate the potential of the structural information for this type of task and
analyze if retrieving structurally similar elements improves retrieval effectiveness.

5.1 Structural Information in Relevant Elements

We study two different aspects of the structure of documents that can help the
retrieval system to discriminate between relevant and non relevant elements.
Namely, the containing journal of an element (the journal where that element
belongs to) and the element type. Table 1 shows the number of different journals
and element types judged relevant per topic. If we compare these numbers to
the total number of different journals (24) and different element types (187)
contained in the new collection, we can see that the knowledge of which journals
and element types are relevant for each of the topics is a very important piece
of information that can help retrieval systems to perform a better search.

One way to use the knowledge of which structural characteristics are relevant
for a certain topic is to increase the a priori belief in relevance of the elements
that have the same structural characteristics. In this way, we use the informa-
tion of which relevant journals and element types are found in the top 20, to
calculate priors and increase the a priori belief in relevance of the elements that
are contained in that journal or that are from that specific element type.
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Table 1. Number of different journals and element types judged relevant per topic.
Statistics taken from relevance assessments 2005 version 2. Average over 28 CO topics.
All degrees of relevance are taken into account.

Type info. Avg. Median Max Min

Relevant journals 7.9 8 16 2
Relevant element types 34.4 34.5 73 9

5.2 Updating Priors in a Language Modeling Framework

For our baseline experiments, we used statistical language models (see Sec-
tion 2.3). Using Bayes’ rule and assuming independence between query terms,
the probability of an element E given a query Q can be estimated as the product
of the probability of generating the query terms qi from the element’s language
model and the prior probability of the element:

P (E|Q) ∝
∏

qi∈Q

P (qi|E)P (E) (9)

Typically, little prior knowledge about the probability of an element is avail-
able and either uniform priors are used, or P (E) is taken to be related to the
element’s length (i.e.,long elements are assumed to be more likely to contain
relevant information) (cf. [9]). However, once we have some information about
relevant elements, for example from a user’s relevance judgments, we can use
this information to update the priors. From the judgments, we can discover the
characteristics of relevant elements and update the priors in such a way that
elements with similar characteristics are favored3.

Therefore, once we get information about the structural characteristics of the
relevant elements for a given topic, we define the priors for the journals and
element types and use them to retrieve structurally similar elements. However,
since in the top 20 we may not have seen all relevant journals or element types,
there is the risk of assigning a prior equal to zero to element types or journals
that do actually contain relevant information. To avoid this effect of relying too
much on what is seen in the top 20, we interpolate P (x(E)|rel) with the general
probability of seeing elements from x(E). Thus the prior becomes:

Px(E) =
αP (x(E)|rel) + (1 − α)P (x(E))

P (x(E))
, (10)

where x(E) identifies the journal (element type) to which E belongs, P (x(E)|rel)
is estimated as the fraction of relevant items belonging to the journal (element
type) and P (x(E)) is the fraction of elements in the collection that belongs to
that journal (element type).

3 Strictly speaking P (E) can no longer be called a prior, since it depends on the topic
at hand.
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6 Experiments

Among numerous tracks and scenarios specified for INEX 2005, we participated
in the following: all CO and CAS ad-hoc track sub-tasks, multimedia track,
interactive track, and relevance feedback track. Below, after introducing the
metrics reported in the paper, we will explain in detail our approaches for each
of these (sub)tasks.

Metrics. The official INEX metrics for 2005 ad-hoc and relevance feedback
track are based on extended Cumulative Gain (xCG) metrics [10]. The official
metrics are: normalized xCG (nxCG), effort-precision/gain-recall (ep/gr), and
extended Q and R4. The evaluation can be done either with the generalized
or with the strict quantization. In this paper we report the evaluation results
obtained with nxCG (also denoted as CG in Table 4) at various recall points:
10, 25, and 50 and mean average ep/gr. For multimedia track we report mean
average precision (MAP) values.

Note that for any document cut-off value, say 10, it can be shown that, if
strict quantization is used (or any other binary quantization), and overlap is not
taken into account, and the total number of relevant elements is bigger than 10,
then nXCG at 10 and precision at 10 give exactly the same results. However,
if the number of relevant elements is smaller than 10 for some topics, then this
might have a big impact on the measured performance.

For instance, IBM Haifa’s run “SSCAS no phrase no plus” and Max Planck
Institute’s (MPI) run “MPII TopX SSCAS” have the same average precision at
10 over 4 topics with relevant elements: 0.225 for both runs (over topic 256, 260,
270 and 275). That is, on average 22.5% of the elements inspected in the top
10 is highly exhaustive and specific. However, for one of these 4 SSCAS topics
(topic 270), only 1 relevant document is known. Because of this, the nXCG at 10
over the 4 topics is twice as high for MPI (0.450), which found the document in
its top 10, as it is for IBM (0.225), which did not find it in its top 10. Apparently,
a 100% gain in nXCG does not have to say much about the actual percentage
of relevant items seen by the user. Precision at x is less sensitive to the total
number of known relevant elements than XCG at x, and therefore defining the
ideal recall base as needed for XCG is not really an issue for precision [8].

6.1 Ad-Hoc Track: CO Queries

Thorough. The aim of the Thorough retrieval strategy is to find all highly ex-
haustive and specific elements. Thus, to find all relevant information regardless
of overlapping results. This year we submitted only two runs with the aim of
using them as baseline runs for the other tasks and sub-tasks. Description and
results for these two runs are given in Table 2. Although under the strict quanti-
zation there are not big differences between the two runs, under the generalized,
one of the runs (λ = 0.4) outperforms the other considerably. We used this run
as baseline for the rest of the CO experiments.
4 http://inex.is.informatik.uni-duisburg.de/2005/inex-2005-metricsv6.pdf
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Table 2. CO.Thorough experiments with strict (S) and generalized (G) quantization

Run id Description nXCG[10] nXCG[25] nXCG[50] ep/gr

LMs 04 lpS LMs, λ = 0.4, lp 0.0923 0.0885 0.1020 0.0511
CO LMs trm 085S LMs, λ = 0.85, lp 0.0923 0.0855 0.0859 0.0490
LMs 04 lpG LMs, λ = 0.4, lp 0.2480 0.2433 0.2213 0.0795
CO LMs trm 085G LMs, λ = 0.85, lp 0.2161 0.1856 0.1839 0.0596

Focused. The aim of the Focused retrieval strategy is to find the most exhaustive
and specific element in a path. Once the element is identified and returned, none
of the remaining elements in the path should be returned. In other words, the
result list should not contain overlapping elements. In our experiments for this
task, we investigate the differences in terms of effectiveness between different
approaches to remove overlap and evaluate the approach presented in Section 4.

To compare approaches, we implemented two already known ways of removing
overlap: namely, the naive and the common approach. The naive approach filters
out from the result list everything except one specific type of element (assum-
ing that there is no overlap between elements of the same type). The common
approach is implemented as follows: first, we select the highest scored element
from the result list and remove its ancestors and descendants, then we take the
second highest scored element and remove its ancestors and descendants, and
we continue recursively until all elements from the result list have been either
selected or removed. To evaluate our approach we use different quality thresh-
olds. We observe that although there are no significant differences between the
performance of the runs under the generalized quantization, under the strict
one, the best improvements are achieved when the threshold is not very high,
i.e., when elements are less punished for having irrelevant information. We only
report the results of the best run overall with the threshold defined as the score

Table 3. CO.Focussed experiments with strict (S) and generalized (G) quantization

Approach nXCG[10] nXCG[25] nXCG[50] ep/gr

Naive: select articlesS 0.0115 0.0154 0.0192 0.0116
Naive: select sectionsS 0.0308 0.0417 0.0404 0.0136
Naive: select paragraphsS 0.1209 0.1538 0.1630 0.0654
CommonS 0.0978 0.0927 0.1082 0.0509
UtilityS 0.1016 0.1373 0.1498 0.0561
Naive: select articlesG 0.1582 0.1226 0.1024 0.0443
Naive: select sectionsG 0.1857 0.1753 0.1519 0.0588
Naive: select paragraphsG 0.2310 0.2197 0.2105 0.0764
CommonG 0.2193 0.1909 0.1892 0.0728
UtilityG 0.2127 0.1919 0.1977 0.0742
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of the element at position 375 (1500/4) in the original result list. Note that the
score of this element is usually very small and many of the elements exceed this
threshold. The results of all these runs are shown in Table 3.

For all measures and quantizations, the approach that performs the best is
the one that retrieves only paragraphs. In general, for the naive approach, and
as expected for a focused retrieval task, the longer the element, the worse the
performance. However, it is somehow surprising that the retrieval of sections,
which is also a rather focused unit, is not performing well. The common approach
performs well but under the strict quantization is still far from the best run.
This might be because our baseline contains a length prior that rewards longer
elements. Therefore, when removing overlap, the longer elements, which probably
are not the most exhaustive and specific on the path, are selected. Comparing
the scores of the approach presented in this paper to the ones of the common run,
we see that under the strict quantization the re-ranking of the scores using the
utility function does improve performance considerably (in terms of precision at
high recall levels). That means that the utility function does help the retrieval
model to make a better estimation of the most useful elements in the paths.
Unfortunately, in all runs our approach is outperformed by the naive approach
of selecting paragraphs. A possible cause of this could be that our approach
rewards longer elements too much, but further analysis need to be done to test
this an other hypothesis.

6.2 Ad-Hoc Track: CAS and COS.Thorough Experiments

In our experiments with queries that use structure we aimed at comparing vague
node selection approaches for all four query types (SS, SV, VS, and VV CAS
and COS) with two query rewriting techniques that we used previous years for
INEX [12, 15]. These rewriting techniques treat structural constrains as strict
but mix the terms in different about clauses. In the first rewriting approach
(rw I), all terms that are in different about clauses in the same predicate ex-
pression, and are not at the top level (i.e., not in about(., term) expression),
are added to an extra top-level about clause in the same predicate expression.
The second approach (rw II), is an extension of the first one, where not only
the terms from non top-level abouts are added to the new about, but also all the
terms from the other predicate, if there exists any, are added to the top-level
about in each predicate.

We report the results using only VVCAS and COS.Thorough assessments as
we wanted to test the approaches on the same assessments set. We present only
the results using generalized quantization as the results using strict quantization
lead to the same conclusions (see extensive set of experiments in [14]). The
runs given in bold are the best ones for each series of experiments. In the first
set of experiments we test how much we can improve the effectiveness when
using rewriting techniques. The first three rows in Table 4 show that rewriting
techniques help; e.g., the rw II shows overall better scores, especially for early
precision as can be seen in CAS runs, and it also has higher MAP values.
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Table 4. INEX 2005 CAS and COS.Thorough experiments with different vague sce-
narios and rewriting techniques evaluated using nxCG at different recall points and
ep/gr with generalized quantization

CAS COS.Thorough
Exp. class CG[10] CG[25] CG[50] MAP CG[10] CG[25] CG[50] MAP
eq class 0.2799 0.2851 0.2644 0.05033 0.2677 0.2258 0.1787 0.03205
rw I 0.2687 0.2834 0.2645 0.04670 0.2715 0.2430 0.1894 0.03323
rw II 0.3030 0.2977 0.2679 0.05476 0.2872 0.2467 0.1898 0.03409
mm(sv) 0.2865 0.2882 0.2626 0.05219 0.2772 0.2333 0.1951 0.03657
man55(sv) 0.3066 0.2853 0.2419 0.05291 0.2727 0.2349 0.1972 0.03650
mm(vs) 0.2672 0.2658 0.2524 0.06749 0.2827 0.2499 0.2042 0.04283
man55(vs) 0.2316 0.2417 0.2391 0.06720 0.2751 0.2410 0.2060 0.04587
mm(vv) 0.2811 0.2728 0.2529 0.07062 0.2912 0.2580 0.2258 0.06060
man55(vv) 0.2545 0.2553 0.2428 0.07296 0.2851 0.2585 0.2315 0.06872

mm(vv)rwI 0.2734 0.2641 0.2603 0.05899 0.2929 0.2686 0.2262 0.06168
man55(vv)rwI 0.2427 0.2691 0.2469 0.06872 0.3040 0.2676 0.2395 0.07168
mm(vv)rwII 0.3092 0.2815 0.2366 0.05760 0.2873 0.2492 0.2168 0.05878
man55(vv)rwII 0.3005 0.2943 0.2556 0.06896 0.2956 0.2688 0.2262 0.06891

In the second set of experiments we replace the strict queries with the vague
ones. The improvements are significant and they can go up to more than 100%
(e.g., for the MAP in COS “man55(vv)” run). Clearly, vague element selection
has higher MAP values than rewriting techniques, but in all CAS experiments
it has lower precision at low recall points. This can indicate that rewriting tech-
niques might be used as a precision tool, while vague element selection can be
considered as a recall tool. Looking at different vague scenarios, namely SV,
VS, and VV, and except for some early precision scores, VV runs seem to have
the best performance. Therefore, “mm(vv)” and “man55(vv)” runs are used in
combination with rewriting techniques for further experiments.

The third set of experiments confirms our assumption about the rewriting
techniques as a precision and vague element search as a recall enhancement tool.
As can be seen in Table 4 in most of the cases the combination of rw I and rw II
rewriting techniques and manual and automatic vague element search improves
early precision. However, not in all cases we managed to keep the MAP values,
especially for the rw II combinations as can be seen in CAS runs.

6.3 Multimedia Track: Image Queries

An important goal of our multimedia extension was to showcase and test the
flexibility and extendibility of the SRA approach. In addition, we tested if using
visual similarity can contribute to better results. To this end, we compared
the multimedia queries discussed in Section 3 to similar queries with all image
similarity clauses (src:) removed. The results of these two approaches using
three different models for text search is given in Table 5. There exist differences
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Table 5. Results for MM track

LM MAP Okapi MAP GPX MAP
text only 0.2751 text only 0.2110 text only 0.2567
multimedia 0.2600 multimedia 0.2133 multimedia 0.2627

between the models, but we did not find any improvement using visual similarity,
in fact the best run uses only textual language models and is significantly better
than its multimedia counterpart. We believe this is partially due to the nature
of the collection and topics, but more research is needed to investigate if and
how visual information can help to improve retrieval results in this collection.

6.4 Relevance Feedback Track

To analyze the effects of using structural information in the relevance feedback
process as described in Section 5, we designed two main experiments. The first
one varies the values for α in Equation 10 to analyze the effects of assigning
different importance to the structural information found in the top 20. The
values used are: 0.75, 0.5 and 0.25. This experiment is done on top of the baseline
used in the rest of experiments, namely: CO LMs 04 lp. The second experiment
aims to identify which of the two types of structural information provides better
improvement to the overall effectiveness of the IR system. Therefore, we fix the
value of α in Equation 10 to 0.5 and analyze the gain obtained when using journal
priors, element priors, and both priors at the same time. This experiment is
done on top of one of our runs for the COS.Thorough task that uses the VVCAS
approach explained in Section 2.

Since the official results show that very little gain is obtain for any of the
runs, we do not report the numbers here. However, we observe that the journal
prior seem to slightly improve recall and that there is no significant differences
in performance when using different α’s. The element prior seems to deteriorate
the retrieval scores. We believe that this prior would perform much better when
combined with a content-oriented query expansion, but further analysis and
experiments need to be done in order to test this hypothesis.

7 Conclusions and Future Work

Throughout the paper we show that the TIJAH database system is flexible
enough to incorporate advanced search techniques, such as vague element selec-
tion and relevance feedback, and search on heterogeneous data sources, such as
a combination of images and text. For vague search, query rewriting techniques
seem to be more suitable for obtaining higher precision at low recall points, while
vague element selection is more suitable for higher average precision. Their com-
bination however can boost the early precision, but it can also have negative
influence on mean average precision. The simple image search model shows no
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improvements when combined with text search model. The approach presented
to re-rank retrieval scores using an utility function seems to improve effective-
ness when removing overlap. Unfortunately, this method does not outperform
the simple approach of selecting the paragraph elements. Using only the struc-
tural characteristics of the elements in a relevance feedback process does not
help retrieval performance in our case.

We plan to continue the experimental evaluation of different scenarios for
search in structured documents: (1) the focused search using different utility
functions to improve the effectiveness of overlap removal, (2) the vague element
search with different assignment of non-uniform down-weighting factors and its
combination with rewriting techniques, (3) the usage of structural relevance
feedback in combination with content-oriented query expansion, and (4) the
image search for improving retrieval results.
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14. V. Mihajlović, D. Hiemstra, and H. E. Blok. Vague Element Selection and Query
Rewriting for XML Retrieval. In Proceedings of the 6th Dutch-Belgian Information
Retrieval Workshop, 2006.
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Abstract. This paper describes experiments carried outwith theXFIRM
system in the INEX 2005 framework. The XFIRM system uses a relevance
propagation method to answer CO and CAS queries. Runs were submitted
to the ad-hoc and relevance feedback tracks.

1 Introduction

The approach we used for our participation at INEX 2005 is based on the XFIRM
system [6], and uses a relevance propagation method. The XFIRM system was
adapted for submitting runs to the ad-hoc track (for CO, CO+S, and CAS tasks)
and the relevance feedback track.

2 Experimental Setup

2.1 XFIRM Data Model

The XFIRM system is based on a relevance propagation method. We use a
generic data model that allows the implementation of many IR models and the
processing of heterogeneous collection. We consider that a structured document
sdi is a tree, composed of leaf nodes lnij and attributes aij and simple nodes
nij (all nodes that are not leaf nodes or attributes).
Structured document: sdi = ({nij} , {lnij} , {aij})
In order to easily browse the document tree and to quickly find ancestors-
descendants relationships, the model uses a representation of nodes and at-
tributes based on the Xpath Accelerator approach [2].

All leaf nodes are indexed, because even the smallest leaf nodes can be rel-
evant or can give information on the relevance of their ancestors. Intuitively,
title or subtitle nodes are not informative, but if a query term occurs in those
nodes, such information can be useful for evaluating the relevance of the ancestor
node. Such an approach has other advantages: the index process can be done
automatically, without any human intervention and the system will be so able
to handle heterogeneous collections automatically; and secondly, even the most
specific query concerning the document structure will be processed, since all the
document structure is stored.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 88–103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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During query processing, relevance values are assigned to leaf nodes and rele-
vance score of inner nodes are then computed dynamically, thanks to a propaga-
tion of leaf nodes score through the document tree. An ordered list of subtrees
is then returned to the user.

2.2 Evaluation of Leaf Nodes Scores

Whatever the considered type of queries, a first step in query processing is to
evaluate the relevance value of leaf nodes ln according to the query. Let q =
t1, . . . , tn be this query. Relevance values are computed thanks to a similarity
function RSVm(q, ln), where m is an IR model.

RSVm(q, ln) =
n∑

i=1

wq
i ∗ wln

i (1)

Where wq
i and wln

i are respectively the weights of term i in query q and leaf
node ln.

According to previous experiments [8], we choose to use the following term
weighting scheme, which aims at reflecting the importance of terms in leaf nodes,
but also in whole documents:

wq
i = tf q

i wln
i = tf ln

i ∗ idfi ∗ iefi (2)

Where tf q
i and tf ln

i are respectively the frequency of term i in query q and leaf
node ln, idfi = log(|D|/(|di| + 1)) + 1, with |D| the total number of documents
in the collection, and |di| the number of documents containing i, and iefi is the
inverse element frequency of term i, i.e. log(|N |/|nfi|+1)+1, where |nfi| is the
number of leaf nodes containing i and |N | is the total number of leaf nodes in
the collection.

Inner nodes relevance values are evaluated thanks to one or more propagation
functions, which depend on the searching task. Such propagation functions are
described in the following sections.

3 CO Task

3.1 Inner Nodes Relevance Values Evaluation

In our model, each node in the document tree is assigned a relevance value which
is function of the relevance values of the leaf nodes it contains. We believe that
terms that occur close to the root of a given subtree are more significant for the
root element that ones on deeper levels of the subtrees. It seems therefore that
the larger the distance of a node from its ancestor is, the less it contributes to
the relevance of its ancestor. This affirmation is modelled in our propagation
formula by the use of the dist(n, lnk) parameter. dist(n, lnk) is the distance
between node n and leaf node lnk in the document tree, i.e. the number of arcs
that are necessary to join n and lnk.
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It is also intuitive that the more a node contains relevant leaf nodes, the more
it is relevant. We then introduce in the propagation function the |Lr

n| parameter,
which is the number of leaf nodes being descendant of n and having a non-zero
relevance value (according to equation 1).

A relevance propagation function using these parameters has been tested in
the INEX 2004 framework [6]. In the 2005 evaluation campaign, we propose to
add two parameters:

– We propose to increase small nodes importance during propagation. Indeed,
we think that authors of documents use small nodes to highlight impor-
tant informations. These nodes can therefore give precious indications on
the relevance of their ancestors. In our propagation function, this intuition
corresponds to the β(lnk) parameter.

– We introduce the ρ parameter, inspired from work presented in [3], which
allows the introduction of document relevance in inner nodes relevance eval-
uation. The idea behind context is: an element in a relevant document should
be better ranked than an identical element in a non-relevant document.

The relevance value rn of a node n is therefore computed according the following
formula:

rn = ρ ∗ |Lr
n|.

∑
lnk∈Ln

αdist(n,lnk)−1 ∗ β(lnk) ∗ RSV (q, lnk)

+(1 − ρ) ∗ |Lr|.
∑

lnk∈L

αdist(root,lnk)−1 ∗ β(lnk) ∗ RSV (q, lnk)

= ρ ∗ |Lr
n|.

∑
lnk∈Ln

αdist(n,lnk)−1 ∗ β(lnk) ∗ RSV (q, lnk)

+(1 − ρ) ∗ rroot (3)

where lnk are leaf nodes being descendant of n and Ln is the set of leaf nodes
being descendant of n. rroot is the relevance score of the root element, i.e. the
relevance score of the whole document, evaluated with equation 3 with ρ = 1.
β(lnk) is evaluated as follows:

β(lnk) =

⎧⎨
⎩

lk/Δl if dist(n, lnk) = 1 and lk < Δl
log(Δl/lk) if dist(n, lnk) > 1 and lk < Δl
1 else

(4)

with lk the length of node lnk and Δl the average length of leaf nodes in the
collection. If a node is smaller than the average length of leaf nodes, its role in
the propagation function is emphasized.

3.2 Runs

CO.Thorough strategy. For the CO.Thorough task, all nodes having a non-zero
relevance value are returned by the XFIRM system. We experimented using
various values of ρ ∈ [0..1].
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CO.Focussed strategy. In order to reduce/remove nodes overlap, we use two
different algorithms:

1. For each relevant path, we keep the most relevant node in the path (around
20% of nodes overlap still remains)

2. For each relevant path, we keep the most relevant node in the path. The
results set is then parsed again one time, to eliminate any possible overlap
among ideal components.

CO.FetchAndBrowse strategy. In this task, elements are first ranked by the
relevance of the document they belong to, and then by their own relevance. We
use the following algorithm:

1. relevance values are computed for each document in the collection;
2. relevance values are computed for each node of the collection;
3. documents are ranked by decreasing order of relevance;
4. for each document, elements they contain are ranked by decreasing order of

relevance and are returned to users.

Document relevance is computed with the Mercure system [1]. Previous exper-
iments [5] have shown that for a fetch and browse strategy, results are better
when evaluting document relevance with the Mercure system (which was devel-
oped for this purpose) than with our relevance propagation method (which aims
at find elements instead of documents).

3.3 Results

All results described in this paper use the inex1.8 version of the collection, which
is the official 2005 collection. However, due to a misunderstanding, our official
submissions were obtained with the inex1.6 version of the collection. For infor-
mation, official submissions are mentioned in italic characters and are followed
by the ’*’ symbol.

Table 1. CO.Thorough strategy. Quantisation: Generalised.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
ρ = 1 0,1684 0,168 0,1772 0,0562 0,1100 0,2231
ρ = 0.9 * 0,15 * 0,156 * 0,174 * 0,043 * 0,085 * 0,188 *
ρ = 0.9 0,1712 0,1696 0,1786 0,0577 0,1089 0,2179
ρ = 0.8 0,1634 0,1845 0,1859 0,0569 0,1057 0,2138
ρ = 0.7 0,1727 0,2006 0,1883 0,0569 0,1044 0,2110
ρ = 0.6 0,1713 0,2058 0,1928 0,0565 0,1031 0,2078
ρ = 0.5 0,1762 0,2036 0,1894 0,0561 0,1019 0,2051
ρ = 0.4 0,1802 0,2075 0,1897 0,0557 0,1009 0,2040
ρ = 0.3 0,1931 0,2116 0,188 0,0555 0,1001 0,2020
ρ = 0.2 0,2049 0,2126 0,1857 0,0553 0,0996 0,2010
ρ = 0.1 0,2083 0,2144 0,1868 0,0548 0,0986 0,2011
ρ = 0 0,2384 0,2126 0,1862 0,0542 0,0976 0,1981
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Table 2. CO.Thorough strategy. Quantisation: Strict.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
ρ = 1 0,012 0,0299 0,0464 0,0009 0,0012 0,0208
ρ = 0.9 * 0,011 * 0,025 * 0,047 * 0,001 * 0,001 * 0,021 *
ρ = 0.9 0,012 0,0258 0,0462 0,0012 0,0015 0,0216
ρ = 0.8 0,008 0,0329 0,0475 0,0014 0,0016 0,0213
ρ = 0.7 0,008 0,0425 0,0514 0,0015 0,0017 0,0216
ρ = 0.6 0,008 0,0505 0,0522 0,0016 0,0018 0,0218
ρ = 0.5 0,012 0,0569 0,0546 0,0017 0,0019 0,0209
ρ = 0.4 0,016 0,0585 0,0555 0,0017 0,0019 0,0206
ρ = 0.3 0,024 0,0617 0,0555 0,0017 0,0020 0,0199
ρ = 0.2 0,036 0,0633 0,0555 0,0018 0,0020 0,0199
ρ = 0.1 0,044 0,0633 0,0563 0,0019 0,0021 0,0199
ρ = 0 0,0684 0,0636 0,0579 0,0019 0,0021 0,0194

Table 3. CO.Focussed strategy. Quantisation: Generalised.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
ρ = 1 0,1202 0,1214 0,1279 0,0393 0,0798 0,1543
ρ = 0.9 0,112 0,1073 0,0941 0,0260 0,0609 0,1249

Algorithm 1 ρ = 0.8 0,1146 0,106 0,093 0,0256 0,06042 0,1208
... ... ... ... ... ... ...
ρ = 0.1 0,1042 0,094 0,0852 0,0231 0,0577 0,1177
ρ = 0 0,0951 0,0901 0,078 0,0235 0,0607 0,1172
ρ = 1 * 0,119 * 0,122 * 0,119 * 0,030 * 0,060 * 0,132 *
ρ = 1 0,1364 0,1445 0,1453 0,0396 0,0748 0,1579
ρ = 0.9* 0.104 * 0.104 * 0.089 * 0.022 * 0.052 * 0.106 *
ρ = 0.9 0,1299 0,1171 0,1021 0,0276 0,0624 0,1271

Algorithm 2 ρ = 0.8 0,1235 0,1144 0,0988 0,0271 0,0622 0,1258
... ... ... ... ... ... ...
ρ = 0.1 0,1131 0,1033 0,092 0,0256 0,0613 0,1197
ρ = 0 0,0951 0,0901 0,078 0,0235 0,0607 0,1172

CO.THOROUGH strategy. Tables 1 and 2 show the results obtained with dif-
ferent values of ρ.

Best results are obtained with small values of ρ, especially for the strict quanti-
sation function. This seems to show that root relevance (i.e. document relevance)
has a high impact on elements relevance.

CO.FOCUSSED strategy. Tables 3 and 4 show the results obtained with differ-
ent values of ρ.

Algorithm 2 (results without any nodes overlap) allows to obtain better re-
sults than algorithm 1 for all metrics. As opposed to results obtained for the



XFIRM at INEX 2005: Ad-Hoc and Relevance Feedback Tracks 93

Table 4. CO.Focussed strategy. Quantisation: Strict.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
ρ = 1 0,012 0,016 0,0336 0,0024 0,0034 0,0051
ρ = 0.9 0,014 0,0156 0,0188 0,0030 0,0038 0,0015

Algorithm 1 ρ = 0.8 0,014 0,0156 0,0196 0,0031 0,0039 0,0011
... ... ... ... ... ... ...
ρ = 0.1 0,004 0,0056 0,0128 0,0011 0,0016 0,0008
ρ = 0 0 0,004 0,012 0,0009 0,0015 0
ρ = 1 * 0,011 * 0,006 * 0,025 * 0,002 * 0,003 * 0,004 *
ρ = 1 0,016 0,0112 0,0296 0,0034 0,0046 0,0066
ρ = 0.9* 0.014 * 0.020 * 0.028 * 0.004 * 0.004 * 0.002 *
ρ = 0.9 0,014 0,0172 0,0204 0,0031 0,0039 0,0018

Algorithm 2 ρ = 0.8 0,014 0,0172 0,0236 0,0031 0,0039 0,0011
... ... ... ... ... ... ...
ρ = 0.1 0,004 0,0072 0,0176 0,0013 0,0019 0,0011
ρ = 0 0 0,004 0,012 0,0009 0,0015 0

Table 5. CO.FetchBrowse strategy. ep/gr - MAP-Element metric.

Generalised Strict
ρ = 1 0,1167 0,0063
ρ = 0.9 * 0,108 * 0,006 *
ρ = 0.9 0,1229 0,0068

... ...
ρ = 0.1 0,1183 0,0065
ρ = 0 0,0731 0,0042

CO. Thorough strategy, document relevance seems to have no impact on element
relevance (best results were obtained with ρ = 1).

CO.FETCHBROWSE strategy. Results obtained with the CO.FetchBrowse
strategy are described in table 5. Results are good compared to other partic-
ipants, since we were ranked in the top 5 for both quantisation functions. More-
over results are substantially better for the MAP metric than those obtained for
the CO.Thorough strategy (see tables 1 and 2). We observe for example up to
113% increase for the generalised quantisation function with ρ = 0.9.

4 CAS Task

4.1 Inner Nodes Relevance Value Evaluation

The evaluation of a CAS query is carried out as follows:

1. INEX (NEXI) queries are translated into XFIRM queries
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2. XFIRM queries are decomposed into sub-queries SQ and elementary sub-
queries ESQ, which are of the form: ESQ = tg[q], where tg is a tag name,
i.e. a structure constraint, and q = t1, ..., tn is a content constraint composed
of simple keywords terms.

3. Relevance values are then evaluated between leaf nodes and the content
conditions of elementary sub-queries

4. Relevance values are propagated in the document tree to answer to the
structure conditions of elementary sub-queries

5. Sub-queries are processed thanks to the results of elementary sub-queries
6. Original queries are evaluated thanks to upwards and downwards propaga-

tion of the relevance weights

Step 3 is processed thanks to formula 1. In step 4, the relevance value rn of
a node n to an elementary subquery ESQ = tg[q] is computed according the
following formula:

rn =
{∑

lnk∈Ln
αdist(n,lnk)−1 ∗ RSV (q, lnk) if n ∈ construct(tg)

0 else
(5)

where the construct(tg) function allows the creation of set composed of nodes
having tg as tag name, and RSV (q, lnk) is evaluated during step 2 with formula
1. The construct(tg) function uses a Dictionnary Index, which provides for a
given tag tg the tags that are considered as equivalent. For example, a title node
can be considered as equivalent to a sub-title node. This index is built manually.
More details about CAS queries processing are can be found in [7].

4.2 Runs

In order to answer the different searching tasks, we used different Dictionnary
indexes:

– The DICT index is composed of equivalencies given in the INEX guidelines.
For example, ss1, ss2 and ss3 nodes are considered as equivalent to sec nodes.

– The ExtendedDICT is composed of very extended equivalencies. For exam-
ple, sec, ss1, ss2 and ss3 nodes are equivalent to both p and bdy nodes.

SSCAS strategy. We use the DICT index and results are filtered in order to
answer strictly to constraints on the target element and support elements.

VVCAS strategy. We use the EXtendedDICT index, and no filter is applied on
results.

SVCAS strategy. We use the DICT index. No filter is applied on results: they
match the structure constraint on the target element in a strict way (since the
DICT index is used), and their relevance score is eventually increased by the
relevance score of results of subqueries on support elements.
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VSCAS strategy. We use the DICT index on support elements and the Ex-
tendedDICT on target elements.

4.3 Results

Results for all strategies are showed in tables 6, 7, 8 and 9. We are in the top 10
for almost all metrics.

Results are especially good for the SVCAS strategy, which is not really surpris-
ing. Our original model processes CAS queries with a SVCAS strategy: relevance
score of target elements are eventually increased by score of results of subqueries
on support elements [7]. Relevance propagation seems consequently to be a very
good solution for processing CAS queries with a SVCAS strategy.

Table 6. SSCAS strategy

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
Generalised DICT * 0,329 * 0,397 * 0,374 * 0,105 * 0,157 * 0,258 *

DICT 0.2861 0.2722 0.338 0.109 0.178 0.246
Strict DICT * 0,325 * 0,31 * 0,32 * 0,016 * 0,02 * 0,121 *

DICT 0.35 0.329 0.338 0.0166 0.021 0.1169

Table 7. VVCAS strategy

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
Generalised ExtendedDICT * 0,29 * 0,258 * 0,246 * 0,061 * 0,101 * 0,206 *

ExtendedDICT 0.3047 0.2727 0.2487 0.0687 0.115 0.219
Strict ExtendedDICT * 0,067 * 0,076 * 0,136 * 0,005 * 0,006 * 0,044 *

ExtendedDICT 0.0885 0.0756 0.1244 0.0054 0.0059 0.0468

Table 8. SVCAS strategy

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
Generalised DICT * 0,303 * 0,272 * 0,276 * 0,105 * 0,181 * 0,301 *

DICT 0.2645 0.2758 0.2916 0.1378 0.2318 0.330
Strict DICT * 0,42 * 0,408 * 0,416 * 0,017 * 0,02 * 0,1 *

DICT 0.44 0.4571 0.4662 0.017 0.022 0.11

Table 9. VSCAS strategy

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
Generalised DICT+ExtendedDICT * 0,194 * 0,21 * 0,207 * 0,07 * 0,119 * 0,218 *

DICT+ExtendedDICT 0.237 0.2346 0.2292 0.047 0.069 0.159
Strict DICT+ExtendedDICT * 0 0,007 * 0,023 * 0,007 * 0,008 * 0,07 *

DICT+ExtendedDICT 0.1667 0.15 0.15 0.006 0.007 0.05
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5 CO+S Task

5.1 Inner Nodes Relevance Value Evaluation

In the CO+S task, queries are processed as in the CAS task. Nodes relevance
values are evaluated using equation 5.

5.2 Runs

+S.THOROUGH strategy and +S.FOCUSSED strategy. We either use the
DICT or ExtendedDICT dictionnary index, since the aim of the task is to in-
vestigate the usefulness of the structural hints.

+S.FETCHBROWSE strategy. We follow the same algorithm as the one used
for the CO.FETCHBROWSE strategy.

5.3 Results and Comparison to the CO Task

+S.THOROUGH strategy. Results are not as good as those obtained without
structural hints (see table 1 and 2 for comparison).

+S.FOCUSSEDstrategy. Asopposed to results obtained for the+S.THOROUGH
strategy, results here are better than those obtained without using structural
hints (see tables 3 and 4 for comparison).

+S.FETCHBROWSE strategy. As for the +S.THOROUGH strategy, results
obtained without using structural hints are better than those obtained for the
CO.FETCHBRWOSE strategy (see table 5 for comparison).

Table 10. COS.Thorough strategy. Quantisation: Generalised.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
DICT * 0,172 * 0,147 * 0,123 * 0,016 * 0,03 * 0,089 *
DICT 0,1759 0,162 0,1422 0,0192 0,0369 0,1022
ExtendedDICT* 0,169 * 0,191 * 0,187 * 0,045 * 0,088 * 0,001 *
ExtendedDICT 0,1787 0,2037 0,206 0,0569 0,1086 0,2166

Table 11. COS.Thorough strategy. Quantisation: Strict.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
DICT * 0,024 * 0,037 * 0,047 * 0 * 0 * 0,008 *
DICT 0,0242 0,0321 0,0362 0,0003 0,0004 0,0062
ExtendedDICT* 0,027 * 0,042 * 0,056 * 0,001 * 0,001 * 0,019 *
ExtendedDICT 0,0308 0,0434 0,0532 0,0012 0,0014 0,0210
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Table 12. COS.Focussed strategy. Quantisation: Generalised.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
DICT 0,1567 0,1362 0,121 0,0458 0,1046 0,1783
ExtendedDICT* 0,144 * 0,128 * 0,127 * 0,031 * 0,069 * 0,143 *
ExtendedDICT 0.1586 0.1497 0.1428 0.0410 0.0855 0.1674

Table 13. COS.Focussed strategy. Quantisation: Strict.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R
DICT 0,0231 0,0308 0,0345 0,0096 0,01183 0,0166
ExtendedDICT* 0,009 * 0,009 * 0,025 * 0,002 * 0,004 * 0,004 *
ExtendedDICT 0.0154 0.0163 0.0571 0.0032 0.0046 0.0086

Table 14. +S.FetchBrowse strategy. ep/gr - MAP-Element metric.

Generalised Strict
DICT * 0,111 * 0,015 *
DICT 0.0155 0,0008
ExtendedDICT * 0.0747 * 0,005 *
ExtendedDICT 0,072 0.0058

6 Relevance Feedback Track

For the RF track, we used three different algorithms that are described below.

6.1 Structure-Oriented Relevance Feedback

Our goal in what we call structure-oriented RF is to enrich the initial query by
adding structural constraints. Our approach consists in refining the initial query
by extracting from the set of judged elements the structure that could contain
the information needed by the user. The idea behind structure-oriented RF is
therefore to find for each query, the appropriate generic structure which is the
generic structure shared by the greatest amount of relevant elements.
The generative structure is extracted as follows. Let:

– Er be the set of relevant elements,
– ei be an element ∈ Er,
– ei be characterized by a path pi and a score wi initialized at the begining

of algorithm (and set to 1 for the experiments presented here). pi is only
composed of tag names. For example: /article/bdy/sec.

– CS be a set of Common Structures, obtained as result.

For each (ei, ej)i�=j ∈ Er × Er, we apply the SCA algorithm, which allows to
retrieve the smallest common ancestor of ei and ej . The path of this smallest
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common ancestor is then added to the set of common structures CS. The SCA
algorithm is processed for each pair of Er elements. The SCA algorithm is
described below:

SCA(ei, ej)
Begin
If pi.f irst = pj .f irst, then

if pi.last = pj .last, then if ∃ep(pp, wp) ∈ CS/pp = pi

then wp ← wp + wj

else wi ← wi + wj

CS ← spi

else
if head(pj) 	= null, then p′j ← head(pj)

w′
j ← wj/2

SCA(ei(pi, wi), e′j(p
′
j , w

′
j))

else SCA(ej , ei)
End

p.last is the last tag of the path p and head(p) is a function allowing to reduce
the path p, i.e. to remove the last tag of the path. For example, head(/article/
bdy/section) = /article/bdy. In our approach, we choose to only compare the
p.last tags of elements, since we are looking for component types (i.e. tags)
instead of complete paths.

In order to express the new (CAS) query, we then extract the top ranked
structure according wi in the CS set. This structure will be either used as it is
in the new query; this form is called complex form=p or simplified in a simple
tag form called simple form=p.last . Original query terms are then added to
the structural constraint.

Example for a given query, we consider three elements e1, e2 and e3 judged rel-
evant having the following corresponding paths (we consider a path as a struc-
ture):
p1= /article/bdy/sec/ss1, p2= /article/bdy/sec/ss1/ss2 and p3= /article/bdy.
Initial scores w1=w2=w3 = 1 are assigned to structures p1, p2 and p3 (see
table 15). Let CS be the set of Common Structures in which we add the gener-
ative structure. At the begining of the algorithm, CS is empty.
The first step of generative structure extraction consists in:

– checking if the two structures have the same root: (article).
– comparing the last tags of p1 structure and p2 structure: p1.last = ss1 and

p2.last = ss2.

Table 15. The Input of extraction generative structure

Relevant element Path Score
e1(p1, w1) p1 = /article/bdy/sec/ss1 w1=1
e2(p2, w2) p2 = /article/bdy/sec/ss1/ss2 w2=1
e3(p3, w3) p3 = /article/bdy w3=1
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– As the tags are different (ss1 	= ss2), we move to high level of p2 structure
p′2 (p′2 = head(p2)=/article/bdy/sec/ss1 ) . p′2’s score is w′

2 = w2/2.
– p′2.last = ss1 = p1.last. So, the p1 structure will be added to CS with

w1 + w2/2 = 1 + 1/2 score.

The second step corresponds to matching of the two stuctures p1 =
/article/bdy/sec/ss1 and p3 = /article/bdy:

– matching in p1 −→ p3 direction gives empty result.
– We match them in inverse direction (p3 −→ p1). The Common Structure is

retrieved after 2 iterations ((head(head(p1))).last = bdy = p3.last).
⇒ The score of p1 is divided by 22 and the structure p3=/article/bdy is
added in the SC set with w3 + w1/4 = 1 + 1/4 score.

In the third step, we proceed in matching p2 and p3. The same process as above
is applied. The Common Structure is extracted when applying three iterations.
The w2 score is divided by 23 = 1/8.
We notice that p3 structure is already in the CS set. So, we increment its score
by adding w2/8.

The most generative structure is the one with the highest score in CS (see
table 16).

Table 16. The Ouput of extraction generative structure: the CS set

Structure Score
/article/bdy/sec/ss1 1 + 1/2 = 1.5
/article/bdy 1 + 1/4 + 1/8 = 1.375

We select in this example /article/bdy/sec/ss1.
Let Q be an initial CO query: Q= ”Information Retrieval”. The new CAS query
is reformulated as follow:

– Structure-Oriented RF in its simple form: ”ss1[about(., ”Information Re-
trieval”)]”.

– Structure-Oriented RF in its complex form: ”//article/bdy/sec/
ss1[about(., ”Information Retrieval ”)]” .

Let Q’ be a structred query (COS or VVCAS): Q’=”article[about(., ”Information
Retrieval”)]”. The new query is:

– Structure-Oriented RF: ”article[about(., ”Information Retrieval”)]
OR ss1[about(.,”Infomation Retrieval”)]” .

6.2 Content-Oriented Relevance Feedback

Our Content-Oriented Relevance Feedback approach is based on the Rocchio’
algorithm [4]. Our aim is to extract the most expressive terms from relevant
elements. The content-oriented RF processes as follows :
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– We consider the set of relevant elements (Er) : Er = er
1, e

r
2, ..., e

r
k, ...er

m ,
– A relevant element er

k is composed of a set of leaf nodes(lnj) : er
k =

lnk
1 , ..., ln

k
j , .lnk

n

– A leaf node lnk
j is a sequence of terms: lnj = {tij}.

Each term is assigned a score according to the following formula:

score(tij , lnk
j ) =

tf j
i

size(lnj)
(6)

Where tf j
i is the frequency of term ti in leaf node lnk

j and size(lnj) is the number
of terms in lnj.

We then compute the score of terms for each relevant element. For each term,
we sum its scores in different leaf nodes.

score(ti, er
k) =

∑
lnj∈er

k

score(ti, lnj) (7)

As a result, we obtain a set of expressive words for each element judged as
relevant. Best terms are selected according to the following formula:

score(ti) =
∑

er
k
∈Er

score(ti, er
k) (8)

The new query is finally composed of terms ranked in the top k according to
formula 8, that are added to the original query terms.

6.3 Content-and-Structure-Oriented Relevance Feedback

In this approach, we propose to combine the structure-oriented Relevance Feed-
back method and the content-oriented Relevance Feedback described above. The
new query (CAS) is composed of the most appropriate generic stucture (complex
or simple form) and of terms ranked in the top k according to formula 8, that
are added to the original query terms.

6.4 Runs and Results

Relative Improvement (RI) and Absolute Improvement (AI) according
MAnxCG[50], MAnxCG[1500] and MAep measures using strict and generalized
quantizations are used to evaluate our runs.

Due to a misunderstanding, official results use inex1.6 version of the collection.
They are presented in table 17, applying the Content and Structure-Oriented ap-
proach.

The results differ w.r.t the query types (if we consider MAep measure, CO:
very negative improvement, CO+S important improvement and VVCAS neg-
ative improvement). Such observations are not enough to conclude. We there-
fore tested the three approches presented above for all 3 CO. Thorough, COS.
Thorough and VVCAS task using the inex1.8 version of the collection.
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Table 17. Official Result of Content and Structure-Oriented RF

MAnxCG[50]
strict

MAnxCG[50]
gen

MAnxCG
[1500] strict

MAnxCG
[1500] gen

MAep
strict

MAep gen

AI-VVCAS-RF -0.0397 -0.0813 0.0437 -0.0251 -0.0020 -0.0008
RI-VVCAS-RF -0.5231 -0.3135 0.1975 -0.1007 -0.0795 -0.0142
AI-COS-RF -0.0014 -0.0176 0.0168 0.078 0.0001 0.0202
RI-COS-RF -0.1728 -0.1371 0.1502 0.6933 0.0421 1.8222
AI-CO-RF -0.0169 -0.0597 -0.1679 -0.1494 -0.0072 -0.0324
RI-CO-RF -0.6576 -0.3703 -0.723 -0.551 -0.7217 -0.7860

Impact of Structure-Oriented RF. According to table 18, we notice that
the Structure-Oriented approach has a positive impact in case of COS queries
(RI gen(MAep =1,6708, MAnxCG@1500=0.808)). This confirms our hypothesis
: adding structural constraints leads to refining query. This hypothesis is however
not proved in case of CO and VVCAS queries and we notice that results obtained
by adding a complex form are worse than those using a simple form. We can
explain the negative impact in CO case by the fact that the user prefers more
than one element type. In the case of VVCAS queries, the reformulation query
using the OR operator may not be appropriate.

Table 18. Impact of Structure-Oriented RF

MAnxCG
[1500] strict

MAnxCG
[1500] gen

MAep strict MAep gen

AI-VVCAS-RF -0.0929 -0.0748 0.0000 -0.0124
RI-VVCAS-RF -0.4200 -0.2914 -0.0063 -0.1810
AI-COS-RF 0.0449 0.0941 0.0005 0.0208
RI-COS-RF 0.3630 0.8394 1.5790 1.0821
AI-CO-RF (simple form) -0.0822 -0.0999 -0.0007 -0.0189
RI-CO-RF(simple form) -0.3540 -0.3685 -0.5391 -0.3397
AI-CO-RF (complex form) -0.1653 -0.1792 -0.0011 -0.0348
RI-CO-RF(complex form) -0.7119 -0.6610 -0.9014 -0.6240

Impact of Content-Oriented RF. We have evaluated the adding of the 10 top
terms to initial queries. According to table 19, we notice a positive improvement
in case of CO+S queries (generalized quantization) and in case of VVCAS (strict
and generalized quantizations). These observations confirm the results obtained
in classical IR. We do not observe improvement in case of CO queries. Therefore,
it is necessary to look for other methods to extract and extend unstructured
queries.

Impact of Content and Structure-Oriented RF. According to above ob-
servations, the combined RF seems efficient in case of CO+S and VVCAS task.
Indeed, table 20 shows that the relative improvement in generalized quantization
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Fig. 1. Comparaison of the base run and of the Structure Oriented RF approach in
case of CO queries

Table 19. Impact of Content-Oriented RF

MAnxCG
[1500] strict

MAnxCG
[1500] gen

MAep strict MAep gen

AI-VVCAS-RF 0.222 0.0095 0.0004 0.0022
RI-VVCAS-RF 0.1004 0.0370 0.0698 0.0321
AI-COS-RF -0.0143 0.0515 0.0001 0.0103
RI-COS-RF -0.1156 0.4594 0.01568 0.5343
AI-CO-RF -0.1218 -0.1201 -0.0007 -0.0333
RI-CO-RF -0.5245 -0.4430 -0.5787 -0.5977

Table 20. Impact of Content and Structure-Oriented RF

MAnxCG [1500] strict MAnxCG [1500] gen MAep strict MAep gen
AI-VVCAS-RF 0.0228 0.0082 0.0005 0.0031
RI-VVCAS-RF 0.01031 0.0319 0.0985 0.0451
AI-COS-RF -0.0132 0.0535 0.0001 0.0107
RI-COS-RF -0.1067 0.4773 0.4588 0.5537
AI-CO-RF -0.1960 -0.1812 -0.0010 -0.0415
RI-CO-RF -0.7736 -0.7451 -0.8441 -0.6684

is more than 50% in the case of CO+S queries and 7% in the case of VVCAS
queries. These results confirm the classical IR results and the generative struc-
ture effectiveness to refine structured queries. Results are still negative in the
case of CO queries.
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Discussion. We compared different approaches according to each query type.
We notice that improvements obtained by Content and Structure Oriented RF
are more important in case of VVCAS query type. The Structure-Oriented RF
approach is the most effective according to CO+S queries (in generalized quanti-
zation). In ep/gr curve of CO queries (figure 1), we notice that Structure-Oriented
RF are effective according the precision effort values where (gr∈ [0.5,0.53],
[0.59,0.68] and [0.73,0.75]). RF is consequently partially benefic for CO queries.
We will look for methods extending these intervals in our future works.
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Abstract. We describe the University of Amsterdam’s participation in
the INEX 2005 ad hoc track, covering the Thorough, Focused, and Fetch-
Browse tasks and their structured (+S) counterparts. Our research ques-
tions for this round of INEX were threefold. Our first and main research
question was to investigate the contribution of structural constraints to
improved retrieval performance. Our main results were that the two types
of structural constraints have different effects. Constraining the target
of result elements gives improvements in terms of early precision. Con-
straining the context of result elements improves mean average precision.
Our second research question was to experiment with selective indexing
strategies based on either the length of elements, the tag-name of ele-
ments considered relevant in earlier INEX years, or simply by indexing
all sections or articles. Our experiments show that disregarding 80–90%
of the total number of elements does not decrease retrieval performance.
Third, we considered the automatic creation of structured queries us-
ing blind feedback. Here, our results are inconclusive, mainly due to few
queries used and lack of comparison to traditional blind feedback.

1 Introduction

In this paper we describe the University of Amsterdam’s participation in the
INEX 2005 adhoc track. The three research questions we addressed in this year’s
round of INEX were to explore the contribution of structured constraints, to
try to make our system more efficient by reducing the size of our index, and
to construct structured queries as a form of query expansion. These research
questions built on experiences obtained in our previous INEX participations.

In previous years we created our runs based on an index of all overlapping
XML elements [11, 12]. Our main technical objective this year was to experiment
with different methods of creating a more selective index. The aim was to create
a more efficient retrieval system without sacrificing retrieval effectiveness. We
measured the effect of several different index reduction schemes. In the Focused
task we looked at two simple non-overlapping indexes: section index and article
index. As a baseline we used a run from our overlapping element index, where
overlap was removed in a list based manner. Both the section run and the article
run performed considerably worse than the baseline. In the Thorough task we

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 104–118, 2006.
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looked at two reductions of our full overlapping element index: one based on ele-
ment length and another based on past relevance assessments. Our main finding
was that even with a 80–90% reduction in the number of indexing units, we do
not see a reduction in retrieval effectiveness.

In our experiments with structured queries in previous years, we found that
structural constraints lead to improvements in early precision. This year we
wanted to explore whether different types of structural constraints contribute
differently to this gain. We measured the effect of different aspects of structural
constraints. The CO+S tasks provide an excellent framework for these exper-
iments. We compared four runs using different structural aspects. First of all,
we had a baseline where no structural constraints were used. We had two runs
which used a single aspect of the structured queries: either by restricting the
type of target element, or by restricting the context of target element. Finally,
we had a run which used both aspects of structured queries. Our main finding is
that the target constraints are useful for improving early precision. On the other
hand, the context constraints are more useful for mean average precision.

Some of the topics in the CO+S task were only formulated using a content
only query, but had no content and structure formulation. For these queries we
attempted to create a structured query automatically using blind relevance feed-
back. As with so many blind feedback experiments, our results are inconclusive,
partly due to a limited number of queries used.

Finally, we also looked at the the new FetchBrowse task, for which we con-
sidered the simple clustering of our Focused runs. That is, for the FetchBrowse
task we re-ordered our Focused runs such that results from the same document
appear at consecutive positions in the ranking. Our results for this task are
inconclusive, mainly because it is not clear how to evaluate this task.

The remainder of the paper is organized as follows. In Section 2 we introduce
our retrieval framework: indexing, query processing, and retrieval. We describe
our runs in Section 3. In Section 4 we present and discuss our results. We re-
view related work in Section 5. Finally, we provide some more discussion and
conclusions in Section 6.

2 Retrieval System

2.1 Indexing

For effective and efficient XML retrieval indexing plays an important role. Any
element can, in theory, be retrieved. It has been shown, however, that not all
elements are equally likely to be appreciated as satisfactory answers to an infor-
mation need [5]. In particular, retrieval of the very many, very small elements
is not likely to be rewarded by users. Furthermore, users (and hence metrics)
may be willing to partially reward near misses. This prompted us to investigate
whether we could reduce our indexing size, both in terms of retrievable units
and storage size, without harming our retrieval effectiveness.
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Element Indexes. For retrieving elements we built four indexes.

– Overlapping element index We built the “traditional” overlapping element
index in the same way as we have done in the previous years (see
further [11, 12]).

– Length based index : Very short elements are not likely to be regarded as
relevant. We analyzed the average length of elements bearing different tag-
names. We then indexed only element types having an average length above
a certain threshold. For INEX 2005 we set the threshold to be 25 terms.
The term count was applied before stop-words were removed. The choice of
threshold value was not based on rigorous empirical analysis; hence, thresh-
olding is a subject for future work.

– Qrel based index : Elements with certain tag-names are more likely than
others to be regarded as relevant. We analyzed the INEX 2003 and 2004
assessments and looked at which elements were assessed more frequently than
other. We indexed only elements that had appeared relatively frequently in
previous assessment sets (i.e., they should constitute at least 2% of the total
assessments). As a result, we indexed only 8 element types: article, bdy,
sec, ss1, ss2, p, ip1, and fig.

– Section index : Retrieval of non-overlapping elements is a hot topic in XML
retrieval. We wanted to investigate how simple one can make non-overlap-
ping retrieval. We built an index based on non-overlapping passages, where
the passage boundaries are determined by the structure. We decided to go
for a simple solution. We indexed only section elements (<sec>). We believed
that this simple strategy would be effective, despite (or perhaps even due
to) the fact that the sections do not provide a full coverage of the collection.

Article Indexes. For retrieving articles we built two indexes.

– Article index : the “normal” article index
– Fielded index : An article index containing both content and a selection

of fields. This index was used for processing context restrictions for the
structured queries. The fields were chosen based on INEX 2003 and 2004
structured queries. For our INEX 2005 experiments we used: abs, fm//au,
fm//atl, kwd, st, bb//au, bb//atl, and ip1. Those fields were the ones most
frequently used in the INEX 2003 and INEX 2004 content-and-structure
queries.

For all indexes, stop-words were removed, but no morphological normalization
such as stemming was applied. Table 1 shows some statistics of the different
indexes.

2.2 Query Pre-processing

Recall that the fielded article index only contains the most common query con-
straints. More precisely, our system handles two types of constraints: target
constraints and context constraints. The context constraints we support are a
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Table 1. Properties of the the different indexes. Unit stands for the number of retriev-
able units. Storage stands for the size occupied in physical storage. Query time stands
for the time needed to retrieve 200 retrieval units from the index for each of the INEX
2003-2005 CO topics. All retrieval times are relative to the maximum retrieval time.

Index Units Storage Query time
Element index 10,629,617 1.9G 1.00
Length based 1,502,277 1.3G 0.81
Qrel based 1,581,031 1.1G 0.66
Sections 96,600 223M 0.14
Articles 16,819 204M 0.08
Query fields 16,819 275M –

kind of ‘meta-data’ constraints on the article. We support 8 types of context
constraints. In terms of end-to-end usage, one can think of this as an advanced
query interface where the user can add query terms to the following meta-data
fields:

– Abstract : Article’s abstract (abs).
– Article author : Authors of the article (fm//au).
– Article title: Title of the article (fm//atl).
– Article keywords : Keywords manually assigned to the article (kwd).
– Section title: Section title (st).
– Referenced author : Author name in the bibliography (bb//au).
– Referenced title: Article title in the bibliography (bb//atl).
– Initial paragraph: First paragraph of a section (ip1).

We pre-processed the <castitle> queries such that they matched our indexing
scheme. We processed the <castitle> constraints in different ways, depending
on their format. First, for the the <castitle> constraints that match our fielded
article index, we only need to rewrite the query such that it fits our indexing
scheme. For example, the query:

//article[about(.//abs, ipv6)]//sec[about(., ipv6 deployment)
or about(., ipv6 support)]

becomes

abs:ipv6 ipv6 deployment ipv6 support.

Second, for the constraints that only partly match our indexing scheme, we need
to do additional processing, i.e.,

//*[about(.//au, moldovan) and about(., semantic networks)]

becomes

fm//au:moldovan bb//au:moldovan semantic networks,
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Table 2. Frequency of different context constraints in the castitle queries. Query freq.
refers to how many queries contained the constraint. Total freq. refers to how often the
constraint was used in total. Match refers to how the constraint matches our indexing
scheme.

Context constraint Query freq. Total freq. Match
//*//au 1 1 partial
//*//p 1 1
//sec//fig 1 1
//article//atl 1 2 partial
//article//abs 3 3 full
//article//kwd 1 1 full
//article//bdy 3 4
//article//sec 1 1
//article//bb 1 1
//article//bdy//sec 1 1
//article//sec//p 2 2

since our index makes a distinction between article authors and referenced
authors. Third, for <castitle> constraints that do not fit our index, we simply
extract the query terms. i.e.,

//article[about(.//bdy, synthesizers) and about(.//bdy, music)]

becomes

synthesizers music.

For the 28 INEX 2005 <castitle> queries, 11 had context constraints that did
not match our scheme and 2 had context constraints that did partially match
our scheme. Table 2 shows the frequency of different context constraints in the
query set. Out of 11 types of constraints we only support 4. Of the 7 constraint
types that we do not support 5 have the element names p, sec, and bdy as their
deepest context. We believe that the usefulness of these constraints is limited
since almost all text is contained within such a context. The remaining two
constraint types (using bb and fig) it might have been useful to be able to
handle.

2.3 Automatically Generating Structured Queries

For queries without a <castitle>, we added structured query fields using pseudo
relevance feedback on the fielded article index [10]. We calculated the top 20
feedback terms and we added up to n fielded terms where n is the length of the
original query. For example, the query

computer assisted composing music notes midi

becomes

bb//atl:music bb//atl:musical st:music ip1:musical ip1:music
fm//au:university computer assisted composing music notes midi.
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2.4 Retrieval

For all our runs we used a multinomial language model [4]. We use the same
mixture model implementation as we used in INEX 2004 [12]. We assume query
terms to be independent, and rank elements according to:

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (1)

where q is a query made out of the terms t1, . . . , tk. We estimate the element
language model by taking a linear interpolation of three language models:

P (ti|e) = λe · Pmle(ti|e) + λd · Pmle(ti|d) + (1 − λe − λd) · Pmle(ti), (2)

where Pmle(·|e) is a language model for element e; Pmle(·|d) is a language model
for document d; and Pmle(·) is a language model of the collection. The parameters
λe and λd are interpolation factors (smoothing parameters). Finally, we assign a
prior probability to an element e relative to its length in the following manner:

P (e) =
|e|∑
e |e| , (3)

where |e| is the size of an element e. For a more thorough description of our
retrieval approach we refer to [12].

We handled the structured queries slightly differently. For each structured
query, e.g.

//*[about(.//au, moldovan) and about(., semantic networks)]

we have a fielded version, e.g.

fm//au:moldovan bb//au:moldovan semantic networks,

and a content-only version, e.g.

moldovan semantic networks.

We used the fielded version to create an article run using the fielded article
index. We used the content-only version to create an element run using an ele-
ment index. We created a new element run by re-ranking the existing element
run using the scores from the article run, i.e., each element is assigned the score
of its containing article. Finally, we combined the two element runs using the
combination method combSUM [2].

3 Runs

Our retrieval model has two smoothing parameters, λe for the element model
and λd for the document or article model, and the remaining weight (1−λe−λd)
will be put on the collection model. These parameters determine the amount of
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smoothing and optimal values, especially in the case of XML retrieval, depend
on the statistics provided by the index. We are using widely different indexes,
varying from an index containing all individual elements or subtrees to indexes
containing only the article or section elements, it is non-trivial to compare these
settings over different indexes. Hence, we typically fix the parameters at values
corresponding to traditional adhoc document retrieval, with 0.85 of the weight
on the collection model. The exception here are the Focused element index runs,
where we put more weight on the element and document model based on pre-
submission experiments.

3.1 Content-Only Runs

CO.Focused. In our focused task we experimented with two different ways
of choosing focused elements to retrieve: first, based on the hierarchical seg-
mentation of the collection, and second, based on a linear segmentation of the
collection. We also wanted to compare these two approaches with a non-focused
baseline, namely a document retrieval system. We submitted three runs:
– F-Articles (UAmsCOFocArticle). A baseline run created using our article

index. We used a λ = 0.15 and a normal length prior.
– F-Elements (UAmsCOFocElements). A run created using a mixture model

of the overlapping element index and the article index. We set λe = 0.4 and
λd = 0.4. No length prior was used for this run. Overlap was removed in a
list-based fashion, i.e., we traversed the list from the most relevant to the
least relevant and threw out elements overlapping with an element appearing
previously in the list.

– F-Sections (UAmsCOFocSections). A run created using a mixture model of
the section index and the article index. We set λe = 0.05 and λd = 0.1. A
normal length prior was used.

CO.Thorough. The main research question was to see if we could get away
with indexing only a relatively small number of elements. In our runs we com-
pared three element indexes. The “normal” element index, the qrel-based element
selection and the length-based element selection. We submitted three runs:
– T-Elements (UAmsCOTElementIndex). A run using a mixture model of the

full element index and the article index. We set λe = 0.05, λd = 0.1, and
used a normal length prior.

– T-Qrel (UAmsCOTQrelbasedIndex). A run using a mixture model of the
qrel-based element index and the article index. We set λe = 0.05, λd = 0.1,
and used a normal length prior.

– T-Length (UAmsCOTLengthbasedIndex). A run using a mixture model of
the length-based element index and the article index. We set λe = 0.05,
λd = 0.1, and used a normal length prior.

CO.FetchBrowse. For the fetch and browse we mirrored the focused task
submissions, but clustered the results so that elements within the same article
appear together in the ranked list.
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– FB-Articles (UAmsCOFBArticle) This run was exactly the same as the ar-
ticle run we submitted for the focused task.

– FB-Elements (UAmsCOFBElements) We took the focused element run and
reordered the results in such a way that elements from the same document
are clustered together. The document clusters are ordered by the highest
scoring element within each document. We returned a maximum of 10 most
relevant elements from each article.

– FB-Sections (UAmsCOFBSections) We took the focused section run and
reordered the result set in such a way that the elements from the same
document are clustered together. The document clusters are ordered by the
highest scoring section within each document.

3.2 Content-Only with Structure Runs

For the CO+S task we experimented with three ways of using structural con-
straints.

Target-only. For queries that have a CAS title we only return elements which
satisfy the target constraint of the CAS title. For queries asking for sections,
we accepted the equivalent tags as listed in the topic development guidelines.
NB! We used the terms in the title field of the queries because we want a direct
comparison to CO runs. Retrieval was performed using a mixture model using
the overlapping element index and the normal document index.

Context-only. We retrieved elements as described in Section 2.4.

Target and Context. We retrieved elements as described in Section 2.4. Addi-
tionally we filtered out elements that did not match the target constraint.

+S.Focused

– F-Target (UAmsCOpSFocStrictTarget). A run created using a mixture model
of the overlapping element index and the article index. We set λe = 0.4 and
λd = 0.4. No length prior was used for this run. Target restriction was im-
plemented for queries that had one. Overlap was removed in a list-based
fashion

– F-Context (UAmsCOpSFocConstr). We applied the context-only approach,
described above, on the focused CO element run (UAmsCOFocElements).

– F-ContTarg (UAmsCOpSFocConstrStrTarg). We applied the context-only
approach on the strict on target run (UAmsCOpSFocStrictTarget).

+S.Thorough

– T-Target (UAmsCOpSTStrictTarget). A run created using a mixture model
of the overlapping element index and the article index. We set λe = 0.05
and λd = 0.1. We applied a normal length prior. Target constraints were
respected for queries that had one.
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– T-Context (UAmsCOpSTConstr). We applied the context-only approach,
described above, on the thorough CO element run (UAmsCOTElementIn-
dex).

– T-ContTarg (UAmsCOpSTConstrStrTarg). We applied the context-only ap-
proach on the strict on target run (UAmsCOpSTStrictTarget).

+S.FetchBrowse

– FB-Target (UAmsCOpSFBStrictTarget). We reordered the focused strict
on target run (UAmsCOpSFocStrictTarget) such that results from the same
article were clustered together. Only the 10 most relevant elements were
considered for each article.

– FB-Context (UAmsCOpSFBConstr). We reordered the focused run using
constraints (UAmsCOpSFocConstr) such that results from the same article
are clustered together. Only the 10 most relevant elements were considered
for each article.

– FB-ContTarg (UAmsCOpSFBConstrStrTarg). We reordered the focused run
using constraints and strict targets (UAmsCOpSFocConstrStrTarg) such
that results from the same article are clustered together. Only the 10 most
relevant elements were considered for each article.

4 Results

In this section we will present and discuss our results. The results are based
on version 7 of the INEX 2005 assessments. The results were generated using
version 1.0.3 of EvalJ. We will report our results using a limited number of
metrics, compared to the plethora of metrics available as part of EvalJ. We will
use two MAP-like metrics: MAnxCG@1500 (called MAnxCG from now on), and
ep/gr (MAep). Three early-precision metrics will be used: nxCG@5, nxCG@10,
and R-measure. Our assumption is that these metrics provide a representative
subset of all the available metrics. We will report results using the generalized
quantization. The INEX organizers have labeled the nxCG measures as the “the
official” measures for user-oriented tasks and ep/gr measures as “the official” for
system-oriented tasks.

We will report results in 4 subsections. First, we will look at index reduc-
tion experiments. Next, we will look at effects of manually adding structural
constrains. Then, we will look at the effects of automatically created structural
constraints. Finally, we will present our results for the FetchBrowse task.

4.1 Index Reduction

For the INEX reduction we will look at two tasks: CO.Focused and CO. Thor-
ough. For the CO.Focused task we compare a general element index to two
reduced indices, section index and article index. For the CO.Thorough task we
compare the same general element index to two reduced indices, length-based
reduction and qrel-based reduction.
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Table 3. CO.Focused runs, using generalized quantization and overlap on

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

F-Elements 0.262 – 0.068 – 0.202 – 0.194 – 0.155 –
F-Sections 0.200 -24% 0.062 -8.8% 0.174 -14% 0.150 -23% 0.211 36%
F-Article 0.096 -63% 0.046 -32% 0.178 -12% 0.165 -15% 0.189 22%

Table 4. CO.Thorough runs, using generalized quantization and overlap off

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

T-Elements 0.301 – 0.082 – 0.266 – 0.257 – 0.262 –
T-Length 0.294 -2.3% 0.083 1.2% 0.268 0.8% 0.256 -0.4% 0.265 1.1%
T-Qrel 0.294 -2.3% 0.086 4.9% 0.280 5.3% 0.267 3.9% 0.269 2.7%

Results for the CO.Focused task can be seen in Table 3. We see that the full
element retrieval approach improves over both index reduction methods, except
in the case of R-measure.

Results for the CO.Thorough task can be seen in Table 4. There is very little
difference between the three runs. This means that reducing the indexed elements
from 10.6M elements to circa 1.5M (14-15%) did not affect the effectiveness of
the retrieval. Table 1 shows, however, that the reduced indexes lead to improved
efficiency.

4.2 Structural Constraints

In this section we will analyze the effect of adding structural constraints to
queries. We will distinguish between two types of constraints: target-constraints
and context-constraints. Target constraints restrict the target of the results to
be of certain tag-type, e.g. “give me only sections”. Context-constraints restrict
the environment in which the result elements live, e.g. “give me results from
articles that are authored by Moldovan”.

We will report results for the CO(+S).Focused task. We will look at results
for 4 runs: our 3 official CO+S.Focused runs and our CO.Focused baseline run
(F-Elements). In this sub-section we will only look at the 19 (assessed) CO+S
topics that had a structured version. The remaining 10 (assessed) CO+S topics
will be discussed in the next sub-section.

Table 5 shows the evaluation results. First let’s look at the effect of context-
constraints. The context-constraint run (F-Context) performs considerably bet-
ter than our CO baseline (F-Elements). The improvement is, however, negligible
for the nxCG@5 and nxCG@10. Next let’s look at the effect of target-constraints.
We see that in terms of MAnxCG the performance of our target-constraint run
(F-Target) is considerably worse than our CO baseline. In terms of nxCG@5,



114 B. Sigurbjörnsson and J. Kamps

Table 5. CO(+S).Focused runs, using generalized quantization and overlap on. Here,
we evaluate only over the 19 queries having a <castitle>.

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

F-Elements 0.289 – 0.074 – 0.219 – 0.211 – 0.139 –
F-Context 0.326 13% 0.086 16% 0.234 7% 0.213 1% 0.166 19%
F-Target 0.226 -22% 0.077 4% 0.253 16% 0.246 17% 0.204 47%
F-ContTarg 0.241 -17% 0.092 24% 0.260 19% 0.246 17% 0.228 64%

nxCG@10, and R-measure, there is a considerable performance improvement
when we constrain the target. By using both context and target constraints we
gain back some of the MAP score lost by enforcing the target constraint, while
maintaining our early-precision improvement.

4.3 Automatic Structural Constraints

In this section we will look at the effects of automatically generating structural
constraints. We could, in principle, have generated automatic structured queries
for all the CO queries. However, in practice, we only did it for the topics that did
not have a <castitile> representation. Hence the comparison will only be done
over the limited number of topics. Since we only create context-constraints we
will only compare our baseline CO (F-Elements) run and our F-Context run. The
F-Target is in this case equivalent to F-Elements and F-ContTarg is equivalent
to F-Context.

Table 6 shows the results of the evaluation. As with so many blind-feedback
experiments the results are mixed. We will not analyze these results further here.
It remains as future work to evaluate the structured blind-feedback over a greater
number of queries, and compare it with normal content-based blind-feedback.

Table 6. CO(+S).Focused runs, using generalized quantization and overlap on. Here
we evaluate only over the 10 queries that do not have a <castitle>.

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

F-Elements 0.213 – 0.057 – 0.171 – 0.163 – 0.185 –
F-Context 0.230 8.0% 0.046 -19% 0.161 -5.8% 0.166 1.8% 0.155 -16%

4.4 FetchBrowse

Here we discuss our FetchBrowse results. We will evaluate the task in with
respect to two different aspects. First, since our FetchBrowse runs are simply
reordering of our Focused runs, we evaluate the FetchBrowse using the same
metrics as the Focused task. Second, since the FetchBrowse is an extension of a
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Table 7. CO.FetchBrowse runs, using generalized quantization and overlap on

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

FB-Elements 0.263 – 0.066 – 0.162 – 0.171 – 0.160 –
FB-Sections 0.207 -21% 0.052 -21% 0.130 -20% 0.119 -30% 0.194 21%
FB-Article 0.096 -63% 0.046 -30% 0.178 10% 0.165 -3.5% 0.189 18%

Table 8. CO.Focused and CO.FetchBrowse runs, using generalized quantization and
overlap on

MAP-like precision Early precision
MAnxCG ep/gr (MAep) nxCG@5 nxCG@10 R-measure

F-Elements 0.262 – 0.068 – 0.202 – 0.194 – 0.155 –
FB-Elements 0.263 0.4% 0.066 -2.9% 0.162 -20% 0.171 -12% 0.160 3.2%
F-Sections 0.200 – 0.062 – 0.174 – 0.150 – 0.211 –
FB-Sections 0.207 3.5% 0.052 -16% 0.130 -25% 0.119 -21% 0.194 -8.1%

Table 9. CO.Focused and CO.FetchBrowse runs, using generalized quantization

MAP P@5 P@10 R-prec
FB-Articles 0.489 0% 0.690 0% 0.648 0% 0.481 0%
FB-Elements 0.441 -10% 0.655 -5.1% 0.635 -2.0% 0.465 -3.3%
FB-Sections 0.455 -7.0% 0.648 -6.1% 0.607 -6.3% 0.483 0.4%

document retrieval task, we will massage our runs into document retrieval runs
and evaluate using trec eval.

Table 7 shows the results of evaluating the FetchBrowse task as a Focused
task. The results are quite similar to the results for the Focused task. That is,
the element run outperforms the section and article runs, except for R-measure.

Let us take a closer look at the difference between our Focused and our Fetch-
Browse runs. Table 8 shows the difference between the two run-types. The results
are quite similar except perhaps for nxCG@5 and nxCG@10. That is, the re-
ordering we did to transform the Focused runs into FetchBrowse runs did not
change our results much, when we look at the metrics for Focused.

Let us now look at the document retrieval quality of our FetchBrowse runs.
Since the ‘Fetch’ part of the task refers to plain old document retrieval we
evaluate it using the standard document retrieval metrics that come with the
trec eval package. We transform our runs and assessments to TREC format. An
article is considered relevant in the TREC sense if it contains a relevant element.
We use thus a rather lenient quantization. Results of our evaluation can be seen
in Table 9. We see that the two element-based runs are worse than the article
run. In terms of mean average precision, FB-Elements is even significantly worse
than FB-Articles (at .95 significance level).
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5 Related Work

Here we will discuss some related work. The main goal with this section is to
locate our work within the INEX community.

Language-Models for XML Retrieval. A number of alternative language model-
ing approaches for XML retrieval have been used in INEX. Mihajlović et al. [8]
use a standard multinomial language model [4] including a number of advanced
features such as phrase modeling. Especially in the context of the relevance feed-
back task, they experimented with a range of priors, such as a length prior, an
XML tag name prior, and a journal prior. Ogilvie and Callan [9] take a quite
different approach. First, standard language for all text nodes are estimated. Sec-
ond, language models for all elements are constructed by, bottom-up, repeatedly
calculating a mixture language model of all child nodes.

Selective Indexing. Various types of selective indexing schemes have been used in
INEX. Gövert et al. [3] used a predefined list of tag names. The list is compiled
after careful analysis of tag name semantics. Mass et al. [7] and Clarke et al. [1]
used existing relevance assessments to define the appropriate units for their
index. Index reduction based on eliminating the very many very short elements
has been used by many teams at INEX.

Structured constraints. In this paper we have looked at the effectiveness of strict
interpretation of target constraints and compared it to a baseline where target
constraints are ignored. There is quite some room in between the two approaches.
Liu et. al. [6] propose a few relaxations of target constraints, both based on path
similarity and content similarity.

Structured Feedback. Automatic generation of structured queries has been pro-
posed previously by Mihajlović et al. [8]. They use true relevance feedback to
expand queries with journal information and target constraints.

6 Conclusions

In this year’s INEX we had three main research questions. We wanted to explore
the effect of different types of structured constraints on retrieval effectiveness.
We also wanted to see if we could use selective indexing to make our system
more efficient without loosing retrieval effectiveness. And, third, we consider the
automatic construction of structured queries using blind relevance feedback.

We showed that context-constraints and target-constraints have different ef-
fect on retrieval performance. The context constraints are helpful for improving
average precision. Interpreting the target constraints in a strict manner does
hurt average precision, but do give considerable improvement if we look at early
precision.

For the Focused task, we compared two selective indexes to our full element
index: section index and article index. Retrieving sections and articles is more
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efficient than retrieving from the full element index. The effectiveness of section
and article retrieval is, however, inferior to retrieval from the full element index.

For the Thorough task, we experimented with two different pruning of the
full overlapping element index, using element length and past qrels as pruning
criteria. Neither of the pruning strategies lead to a considerably lower average
performance. Both pruning strategies were, however, more efficient than the full
overlapping element index.

For the FetchBrowse task, it is difficult to draw any final conclusions since
it is not clear how this task should be evaluated. For the document ranking
part of the FetchBrowse task, ranking documents based on their own retrieval
score outperformed the document retrieval based on the highest scoring of either
elements or sections.

The results of our automatic generation of structured queries are inconclusive.
Further experiments are needed to verify its (in)effectiveness.
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Abstract. Structured document retrieval aims at exploiting the struc-
ture together with the content of documents to improve retrieval results.
Several aspects of traditional information retrieval applied on flat doc-
uments have to be reconsidered. These include in particular, document
representation, storage, indexing, retrieval, and ranking. This paper out-
lines the architecture of our system and the adaptation of the standard
vector space model to achieve focussed retrieval.

1 Introduction and Motivation

Traditionally, content-based retrieval systems rely either on the Boolean model
or the vector space model (VSM) [1, 2, 3] to represent the flat structure of doc-
uments as a bag of words. Extensions of these models have been proposed, e.g.,
the fuzzy Boolean model and knowledge-aware models. However, all of these in-
dexing models do ignore the organization of text and the structure of documents
until recently with the advent of “queriable digital libraries”.

XML documents have a standard structure defined by a DTD or XML schema.
While this structure provides documents with hierarchical levels of granularity,
and hence more precision can be achieved by means of focussed retrieval, it does,
however, imply more requirements on the representation and retrieval mecha-
nisms. With the new generation of retrieval systems, the two aspects, the struc-
ture and the content, have to be taken into account. To minimally achieve that
in presence of nested structure like chapter-section-subsection-paragraph, the
traditional information retrieval techniques, e.g., the VSM, have to be adapted
to fit the context of structure-aware retrieval. To design such systems, four basic
aspects are of high importance:

(a) Representation: Textual content of the hierarchically structured documents
is generally restricted to the leave nodes. Hence, representation mechanisms
of the inner nodes content have to be defined.

(b) Retrieval granularity: A basic question is whether the indexing/retrieval unit
must be known ahead of time or is completely dynamically decided by the
user or eventually by the system itself.

(c) Ranking: Related to the first two aspects, a strategy for ranking the retrieved
results has to be decided.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 119–133, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(d) Result presentation: The way results are presented is a key issue [4, 5, 6] and
has to be considered early in the design of the system as part of requirements
engineering. Once ranked, the results are displayed showing their context of
appearance. Further functionality enabling browsing is required.

Taking these aspects into account, we developed a retrieval system. It is fully
implemented in Java and consists of three subsystems: indexing, retrieval and
RMI (Remote Method Invocation) communication server as depicted in Fig. 1.
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Fig. 1. Architecture of the system

The RMI server takes incoming requests for indexing and querying the system
and initiates a new thread for each call. The basic motivation behind this is to
achieve some degree of parallelism. The maximum number of parallel threads de-
pends on the performance of the hardware. From the software architecture point
of view, both index and query subsystem, use a pipelined pattern of processing
units (Fig. 1). Dashed components describe planned extensions. For portability
and tuning purposes, all subsystems are independently configurable via configu-
ration files. During indexing, documents are transformed into our XML schema
(DataMapper), stored in the database (DataStorer), and indexed for retrieval
(DataIndexer). As soon as a query is sent to the system it is analyzed by a query
thread. Documents in the database are matched against the query and relevant
elements1 are ranked in decreasing order.
1 We use element and node interchangeable.
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In this paper, we will discuss the aspects (a)–(d), but with more focus is
more on the representation and the indexing/retrieval problem. First, in Sec. 2,
a generic schema for document representation is presented, onto which the XML
documents are mapped. Section 3 describes the underlying database model used
for storing the content and the corresponding representation. The most inter-
esting issues namely indexing and retrieval are discussed in Sec. 4 and Sec. 5
respectively. Section 7 concludes the paper.

2 Document Structure

The hierarchical structure for the content of documents is usually described by
means of a set of tags (e.g. chapter, section, subsection, etc.), as shown in Fig. 22.

In order to represent a collection of documents having different structure, we
apply an XSLT transformation to derive a common document format (schema).
This step eliminates structural ambiguities and resolves semantic relativism [7].

As illustrated in Fig. 3a, we introduce a general document format (defined
through XML schema) that consists of only three main elements: DOC (docu-
ment), SEC (section) and FRA (fragment). The DOC element defines the root of
the document. SEC is the basic structural element of a document. By recursively
defining SEC (e.g., section) as either containing raw content FRAs (e.g., para-
graphs) and/or made up of other SECs (e.g., subsections), the depth of nested
structures is unlimited. To define smallest retrievable units for indexing and
retrieval, we rely on fragments (FRAs). They stand for the leaf nodes in our doc-
ument schema (see Fig. 3a). Note that if a query refers to another tag not in the
set {DOC, SEC, FRAGMENT}, this latter is interpreted as SEGMENT.

book

editor title body

name surname abstract chapter chapter

TXT TXT

TXT

TXT

TXT

...

title author section section...TXT

title TXT
TXT TXT

TXT

Fig. 2. Example XML document

2 This example will be used throughout the paper. It is important to point out that
the approach presented here is general, but we used the IEEE collection just to
illustrate the processing steps of the system. In other words, the system is collection-
independent and therefore portable.
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(a) Transformed example

Sec8 25

Sec11 18 Sec19 24

metadata content

title

author

Fra9 10

(b) Metadata and Content
blocks

Fig. 3. XML document representation

A node in an XML document is viewed as a tuple (metadata,content), where
metadata refers to descriptive information of the node itself, while content refers
to the segment’s content, properly said (see Fig. 3b). Generally, the first type
of nodes requires database-supported (exact) match during retrieval, while the
second type is subject to partial matching (VSM).

2.1 Metadata

In addition to the content block, the metadata block of a node contains informa-
tion describing that node. Examples of metadata are author, year and keywords
for a DOC or the title for a SEC element. The fragment metadata block is used to
describe its actual content by means of content type, language, and possibly
title (figures, tables).

To allow a semantic interpretation of the content of an element, a type hier-
archy is proposed by Gövert [8]. An extension of the proposed type hierarchy for
metadata is depicted in Fig. 4. There, types are derived from a common base el-
ement. The first level in the hierarchy (bold) corresponds to database supported
data types. Further types in subsequent levels in the hierarchy have one of the
basic database types as supertype (e.g., PersonName is a String). In addition,
data types predicates for comparison are defined. This allows to process sec-

Base

BlobDateStringNumber

PersonName Title Location

English German

ISBN
Number

Phone
Number

...

Fig. 4. Hierarchical metadata types
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tion titles, phone numbers, and author names for instance. This type hierarchy
is used during parsing to optimize the storage efficiently. In addition, it helps
characterize the type of match required during retrieval.

2.2 Content

Generally, the content block of DOCs and SECs are defined as ordered lists of
further (sub)SECs and FRAs. The content block of FRAs is defined as bytecode or
empty. For indexing and retrieval purposes, content is interpreted based on its
type (metadata). Defining a fragment’s content as text block (paragraph) only
might be too restrictive. Therefore, a fragment in our sense refers to paragraphs,
enumerations, lists, figures, tables, formulas, images, sounds, videos, definitions,
theorems, etc. On the other hand, a fragment (FRA) defines the smallest retriev-
able unit of a document. It can be understood as building block (elementary
content container). However, the granular unit is application specific and can be
set at wish to fit sentences as well as the whole text of a chapter.

From the structuring point of view, additional markup within a FRA’s content
might be needed. Our schema supports mathematical environments (using MATH)
and two types of links (using LINK), internal and external links. Internal links
are links within the same document, e.g., citations, figure/table references within
the text and the table of contents. External links refer to external resources,
including reference entries in the references section, references to email/internet
addresses and file references.

While the content block in DOCs and SECs is mandatory, in FRAs it is not.
This allows to include external content by its metadata only. An external source
attribute within the metadata block can be used to refer to the content some-
where else (e.g., a picture file). In contrast to SEC elements, which define their
own context based on their path, e.g., /DOC/SEC/SEC, fragments define a sep-
arate context. As to indexing and retrieval, a fragment in a section lies within
the same context as a fragment in a chapter or subsubsection. This difference is
important in the context of a dynamic term space, discussed in Sec. 5.3.

3 Storage

For efficiency purposes, we use a relational database to store the XML docu-
ments. The goal is to accelerate the access to various structural neighbors of
each node in the document (descendants, ancestors, and siblings). Being a tree,
an XML document can easily and unambiguously be traversed. Therefore, each
node is represented by its document ID and preorder/postorder. We depart from
the idea of preorder and postorder introduced in [9, 10], supporting non-recursive
ancestor/descendant detection and access. Table 1 shows an excerpt of the struc-
tural information of a document representation. Likewise, we designed another
for the corresponding content.

A structural entry is described by the tuple (docID, pre, post, parentID,
tagID, pathID). The root element has pre = 1 and parentID = 0 (no parent)
per definition. The attribute tagID is included for fast name lookup and access.
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Table 1. Structural entries

docID pre post parentID tag path

d1 1 36 0 Doc /Doc
d1 2 5 1 Sec /Doc/Sec
d1 3 4 2 Fra /Doc/Sec/Fra
d1 6 7 1 Fra /Doc/Fra
d1 8 25 1 Sec /Doc/Sec
d1 9 10 8 Fra /Doc/Sec/Fra
d1 11 18 8 Fra /Doc/Sec/Sec
d1 12 13 11 Fra /Doc/Sec/Sec/Fra

For the sake of performance, we added the elements path (XPath without po-
sitional information) pathID to circumvent recursive path generations by using
the parentID relation.

The content of nodes (in particular leaf nodes) is stored in a separate ta-
ble, as suggested in [11]. However, the content of inner nodes can always be
recovered from their descendants as will be discussed in Sec. 4. Note that some
content entries do not have a corresponding representation entry (e.g. figures,
tables).

To improve retrieval performance, metadata handling is completely shifted to
the database. This is achieved by grouping all metadata according to its element.
Instead of having multiple structural and content entries, a single row (docID,
pre, meta1, . . . , metan) is used to store all metadata together. Metadata of
nodes (DOC, SEC, FRA) are stored in separated but very similar tables as shown
in Tab. 2 for the case of sections. The reason of supporting only a single set
of SEC metadata is that all SEC elements (chapters, sections, subsections, etc.)
are assumed to have quite homogenous metadata (e.g., title). Although this
may lead to some ’NULL’ values (unavailable metadata for some elements) in
the database, the whole set can be accessed by a single select statement. This
simplifies and speeds up querying of metadata considerably. A global view is
depicted in Fig. 5. Both, metadata and content entries, are optional. Additional
types of representations (e.g. semantic concepts, figure representations, etc.) can
easily be integrated.

Table 2. Metadata entries for SEC

docID pre title author ...

d1 2 Introduction R. Smith
d1 8 XMl Retrieval J. Alf
d1 11 Granularity NULL
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-ID : int
-Server : String
-DataID : String
-Filename : String

Documents

-RequestTime : Date
-TransferTime : Date
-Status : String

Transfers

-Preorder : int
-Postorder : int

Structure

Metadata

Content
-inex_id : String
-inex_doi : String
-proc_title : String
-price : String
-issn : String
-copyright : String
-proc_month : String
-proc_year : String
-pages : String
-author : String
-title : String

documentMeta

-Title : String

sectionMeta

-Type : String
-Language : String
-Title : String

fragmentMeta

-Frequency : int

VSM
-Data : String

TXT
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-ID : int
-Term : String

Terms

*

*

consists of

-ID : int
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Fig. 5. Conceptual database schema

4 Indexing

To represent texts as a vector of terms and their term frequencies, our natural
language processing (NLP) involves several subtasks containing tokenization,
tagging, term extraction, stemming, filtering and term frequency calculation.
Our implementation is based on abstract components. Taking advantage of the
the modularity aspect, different implementations of the same component can
be instantiated and selected during runtime. Hence, our system can easily be
adapted to process documents in other languages. Our prototype also involves
ready made-components like the tagger, and the stemmer.

During the indexing process, only the content of leaf nodes need to be parsed.
Their representation, a term frequency vector, is stored in the database (VSM
table). Consequent updates of the localIDF, combinedIDF table, and Terms
table are immediately done. These update operations are also carried out during
re-indexing or removal of documents.

The index of inner nodes is obtained by simply merging the index of its
descendants. This is done by summing up their term frequencies. This operation
is equivalent to process the concatenated contents of the descendant nodes. It
is also possible to store the result of the merge operation so that no index
computation is required later during the retrieval process. This reduces search
time, but increases the size of the database. It is important to stress that the
weight vectors are computed during retrieval using the available term frequency
vectors.

We define the context of a node as the set of all elements having the same
path (all chapters, all sections, etc.). In order to dynamically characterize both,
the granularity during indexing and retrieval, we applied a propagation of term
statistics (e.g. tf), in contrast to the weight propagation methodology [12]. In
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addition, the inverse document frequency (idf) for each node is calculated dy-
namically based on the node’s context. Term weights are computed based on
the term frequencies and the idf in this context. This allows to perform focussed
retrieval on any level in the document tree. To achieve that in a given context,
tf of all nodes lying at this level will require tfs of their descendants. Using term
statistic propagation, the descendants’ tf are simply summed up. We avoid re-
cursive data accesses by exploiting preorder and postorder of document elements
(only one SQL select statement).

As to term weighing, we use different idfj,cs of the same term j in different
contexts c. This strategy weighs the same term with the same term frequency
differently depending on c (e.g. chapter vs. subsection). Clearly our approach
puts more attention on the actual context during retrieval. If the unit of retrieval
is defined explicitly, elements in this context are focussed and compared only
among them. Representations of elements in other contexts do not influence the
result.

To implement this idea, we use two tables (see Fig. 5): a table localIDF stores
tuples of the form (docID, pathID, termID, nj), where nj refers to the number
of elements containing term termID in the path pathID within a document
docID. Consider the example given in Tab. 3, the first Tab. 3a indicates that
the term “car” occurs twice in /DOC/SEC nodes of document d1. To calculate
the idfj,c of a term j in a context c, we have to define Nc and nj . Nc is the
number of nodes with pathID = c. Nc can simply be derived via the table
holding the structural entries (see Tab. 1). nj is given by counting the rows
containing pathID = c and termID = j. In the above example, this results
in an inverse document frequency for the term “car” in the node /DOC/SEC
of idfcar,/DOC/SEC = log 3

2 . This definition of idfj,c leads to different idfs in
different contexts.

Since Tab. 3a is quite large, we introduced a summarized shortcut-table
combinedIDF Tab. 3b with the overall goal to reduce the time access to idf
values. Same paths associated with the same terms are precalculated (e.g. term
“car”). For the sake of dynamic document environments (adding, removing and
re-indexing), we still need the information provided by Tab. 3a to adjust the n

Table 3. idf calculation

(a) Table localIDF (b) Table combinedIDF

docID path term nj

d1 /DOC/SEC car 2
d1 /DOC/SEC/SEC mouse 1

d2 /DOC/SEC car 1
d2 /DOC/SEC/SEC dog 1
d2 /DOC/SEC/SEC mouse 3

d3 /DOC/SEC water 1
d3 /DOC/SEC/SEC dog 2

path term n

/DOC/SEC car 3
/DOC/SEC water 1

/DOC/SEC/SEC mouse 4
/DOC/SEC/SEC dog 3
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values correctly. In addition, all Nc values, the numbers of elements with the
same path, are stored in the Path table (see Fig. 5).

Given a particular context (e.g. /DOC/SEC), our indexing strategy allows on-
the-fly computation of the representations associated with these nodes (con-
sidered as documents). Hence, our indexing method stores only term frequency
vectors in the database; weight computation is totally executed on the fly during
the retrieval process. The advantages of this methodology are:

– It behaves exactly like the traditional models at the document level.
– There is no need for empirical parameters as augmentation weights.
– Elements of smaller granularity (of lower level) do not automatically have

sparser feature vectors (leading to smaller similarity), hence they define their
own context. Since the number of terms is at max the total number of terms
in the whole collection.

– Documents can dynamically be added, removed, and re-indexed, without
impacting the weights of other representations.

5 Retrieval

This section explains the retrieval process. In particular, it describes how and
which information is required by the system to answer a user query appropriately.
This includes formulation of the query, setting of specific parameters, matching,
filtering, and presentation of the result.

5.1 Query Formulation

The actual query input is done via an input interface which allows to enter differ-
ent types of queries: KWD (keyword) and NLQ (natural language query, free text),
which are translated into INEX queries. The INEX query supports NEXI-like in-
puts. Hence, we distinguish between metadata and content, we adapted our query
parser to support both kinds of information. Similar to the about(path,terms)
syntax, we added a construct: meta(path,condition). This allows us, for ex-
ample, to efficiently deal with queries like: “return all documents written by
Einstein” using the command //DOC[meta(.,author like ’%Einstein%’)].

In order to avoid long and confusing single-line queries, we use chains of INEX
queries. In our opinion, this concept is also closer to the natural way of ques-
tioning, by successively refining the list of results. Each subquery result works
as a strict filter, allowing only elements of the same or smaller granularity to be
retrieved. This improves the performance without skipping searched elements.
Furthermore, we use these chains for reweighing elements regarding to a user-
defined generality factor (gf), described below. In addition to the INEX-query
chains, several query parameters can be specified by the user (see Fig. 6):

– Maximum results (maxRes): Defines the maximum number of returned
results ranging from 1 to MAXINT .
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– Minimum similarity (minSim): Defines the minimum similarity of re-
turned results ranging from 0 to 1, truncating the list of results below a
given similarity threshold.

– Content importance (ci): Defines the importance of the content similarity
to calculate the retrieval status value (rsv). This parameter ranges from 0
(only meta similarity) to 1 (only content similarity). The final similarity is
computed as rsv = simCont ∗ ci + simMeta ∗ (1 − ci).

– Generality factor (gf): This parameter (∈ [0, 1]) influences the retrieval
granularity. The higher the parameter, the more importance of first sub-
queries, computed as simnew = simold ∗ gf + simnew ∗ (1 − gf).

– Result type (rt): Defines which kind of results we wish to obtain: thorough
or focussed (see Sec. 5.6).

Fig. 6. Query Interface

5.2 Search and Retrieval Paths

The search path specifies which elements are to be investigated and matched
against the current query. In contrast, the retrieval path specifies which ele-
ments are to be returned to the user. Generally these two path are equal, e.g.
//SEC[about(.,wine)]. This means that the retrieval path is always the same
or more general as the search path. So first relevant documents, then relevant



Searching XML Documents – Preliminary Work 129

sections within those documents, and at a last stage relevant fragments within
those sections are identified. Difficulties arise when relevant ancestor elements
contain smaller elements that are further specified. For instance, a query that
retrieves sections containing paragraphs about a certain topic is not easy given
the recursive structure that a section can have.

Our parser for NEXI-like queries implements the following strategy: if the
searched element satisfies the retrieval path, only the element itself is returned.
Otherwise, the closest parent satisfying the retrieval path condition is returned.
In all cases, at most one element is retrieved. So a query like //SEC[about(
./FRA,global warming)] searches all SEC elements at any level (retrieval paths)
containing FRA paragraphs about “global warming” and returns the most relevant
element. A more complex query is //(DOC|SEC)[about(./SEC, anything)].
Here only document or section elements containing sections about “anything”
are to be retrieved, not the sections themselves that are about “anything”.

5.3 Dynamic Term Space

In the context of structured documents, the idea of representing elements at
different structural levels within the same term space has to be reconsidered.
Assume a number of document sections S = {s1 . . . sn} containing a set of unique
terms Ts and a set of chapters C = {c1 . . . cm} containing a set of unique terms
Tc. Note the implicit relation between term space Ts and term space Tc: Ts ⊆
Tc. Let q be a query containing terms Tq addressing sections S and chapters
C. To calculate the similarity sim(si, q) between a section and a query, both
feature vectors have to be within the same term space. The same thing holds for
comparing chapters and the query sim(ci, q).

Neglecting the context, sections and chapters are represented in the same
(global) term space. As a consequence, the feature vectors of low level nodes be-
come sparser and their similarities compared to nodes of higher levels drop. To
overcome this problem, we adopted the concept of a “dynamic term space”.
In contrast to the global term space, and following the concept of context,
nodes in the same context generate a term space. Using a static term space
improves performance, but unfortunately decreases the similarity of low-level
nodes compared with higher ones. Reducing zero weighted elements in the fea-
ture vectors leads to higher precision during the match of low-level nodes. The
number of different indexing representations (different contexts) is expected
to be quite limited. For instance, the mapped INEX collection does not ex-
ceed six structural levels (/DOC/SEC/SEC/SEC/SEC/FRA). During retrieval the
term space for each context is constructed once, so retrieval performance drops
insignificantly.

5.4 Result Computation

INEX queries are stated using keywords in the about(path,kwd1 kwd2 ...
kwdn) syntax. This syntax allows to express several different semantics of key-
words that have to be considered:
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– information retrieval techniques
– +information +retrieval techniques
– information retrieval -techniques
– "information retrieval" techniques
– +"information retrieval" techniques

’+’ (MUST) and ’-’ (CANNOT) indicate whether a term has to be or should
not be present in an element. Based on this, a fast preselection is systematically
done on candidate elements. Hence, index terms are stemmed, also these terms
have to be for comparison.

More complex is the treatment of quoted keywords. Are the keywords books
and "books" equivalent? This depends on whether "books" should occur as it is
(noun in plural form), or should it be stemmed and treated so. It is obvious that
quoted expressions are particulary difficult to process. Consider "red cars".
The term red is an adjective, it is not included in the index. Furthermore, it is
possible that in another context (e.g. “Red Cross”), it is (part of) a proper noun
and, therefore, exists in the index. In our approach, we treat quoted keywords in
two steps: First, we treat them as unquoted, calculating the similarity as given.
Then, we apply a string matching strategy on the original text associated with
the element to sort the results.

Combinations of MUST/CANNOT and quoted expressions are treated as if
all terms within quotes are separately marked as MUST/CANNOT and an initial
result set is computed. This result is reduced to those node containing exactly
the quoted expression.

Note that the computed result consists of tuples of the form (docID, preorder,
postorder, simMeta, simCont). docID (document ID), preorder and postorder
come directly from the database. simMeta and simCont are the calculated meta
similarity and content similarity.

5.5 Ranking and Result Presentation

Ranking is the task by which retrieved elements are decreasingly ordered by their
relevance. Therefore, we use a combination of metadata and content similarity
to compute a retrieval status value rsv (see Sec. 5.1). The ranking process itself
is impacted strongly by the desired granularity. Note that this granularity is
either pre-specified or stated explicitly in the user query. For example, if the user
specifies the document level (context), say section, the system should return only
relevant sections. The similarity can be calculated using two strategies. The first
strategy is to match the query against sections with content aggregated from
its descendants. The second strategy, which we have considered, is to match the
query against the most representative fragment of each section.

After all desired elements are matched against the user query, the combined
similarity values metaSim and contSim are used for ranking. The results are
presented to the user as a sorted list in decreasing order (see Fig. 7). The user
is then able to select a particular result, enabling a display of whole document
in an explorer-like view (see Fig. 8). The document structure is presented as an
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Fig. 7. Result Set

expandable tree, where the selected element is expanded and focused. Having
similarity values available on the screen, the document can be efficiently browsed.
Colors are used to reflect the degree of similarity of the matched elements.

5.6 Result Filtering

In INEX 2004, two kinds of retrieval strategies, thorough and focussed, were
defined. Thorough retrieval returns all relevant elements of a document. Hence,
all ancestors of a relevant element are relevant to a certain degree. This may lead
to multiple result elements along the same path (e.g., a section and its contained
paragraphs).

Focussed retrieval, on the other hand, aims at returning only the most relevant
element along a path. Basically, it relies on two principles [13]: (a) if an element
is relevant to a certain degree, so must be its parent; (b) only one node along
a path of relevant elements is returned. Overlapping elements in the result set
are discarded. This strategy is implemented as post filtering process to refine
the result set. We rely on preorder and postorder to do this efficiently. In other
words, all low-ranked ancestors and descendants are discarded. This strategy
reduces the number of returned elements drastically.

5.7 Query Refinement

In most cases a final search result is achieved through iterative refinement of the
query. The number of results is reduced step by step by adding new information
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Fig. 8. Result Browser

to the query. To enable such a feature, we allow the user to include a list of
preliminary results together with a query. If such a result is set within a query
it acts as a strict filter during query computation.

6 Initial Experiments

In the current evaluation, we will show only some initial experiments. Indeed,
only three retrieval runs were evaluated (CO and COS -both Thorough- and
SSCAS). The results are shown in Tab. 4 (nxCG) and Tab. 5 (ep/gr). The num-
ber between parentheses in each cell indicates the rank of our system compared
with the other participating systems. The results illustrate that our approach is
less competitive in the case of CO and COS tasks. In contrast to that, it is ranked
among the first 10 systems in the case of CAS.

Table 4. Metric: nxCG, Quantization: strict, Overlap=off

nxCG at CO COS SSCAS

10 0.0115(47) 0.0000(28) 0.3250(4)
25 0.0221(42) 0.0094(24) 0.3200(7)
50 0.0416(41) 0.0118(26) 0.3489(9)

To overcome the limitations observed in the case of CO and COS tasks, further
work is underway. It concerns various aspects related to document processing (e.g.
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Table 5. Metric: ep/gr, Quantization: strict, Overlap=off

CO COS SSCAS

0.0051(45) 0.0016(30) 0.1001(5)

stop words filtering of metadata) and adjustment of the system parameters
(sec. 5.1).Additional experimentalworkwith regard toFocused tasks is to be done.

7 Conclusion

The paper described the basic tasks of an XML retrieval system. Details on
the methodology are provided. An initial experimental evaluation is already, but
only partly, conducted showing promising results. However, a thorough empirical
work is still needed along with some additional features of the system.
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Abstract. This paper describes the retrieval methods of TRIX system based on 
structural indices utilizing the natural tree structure of XML. We show how 
these indices can be employed in the processing of CO as well as CAS queries, 
which makes it easy for variations of CAS queries to be processed. Results at 
INEX 2005 are discussed including the following tasks: CO.Focussed, 
CO.FetchBrowse, CO.Thorough and all of the CAS tasks. While creating result 
lists, two different overlapping models have been applied according to task. The 
weights of the ancestors of an element have been taken into account in re-
weighting in order to get more evidence about relevance.  

1   Introduction to TRIX Retrieval System 

The present study comprises of retrieval experiments conducted within the INEX 
2005 framework addressing the following research questions: ranking of elements of 
‘best size’ for CO queries, query expansion, and handling of structural conditions in 
CAS queries. In INEX 2005 we submitted runs for the following tasks: CO.focussed, 
CO.thorough, CO.FetchBrowse, and all of the CAS tasks.  

Next we introduce the TRIX (Tampere information retrieval and indexing of 
XML) approach for indexing, weighting and re-weighting. Then, Section 2 describes 
the processing of CAS queries and in Section 3 the results of INEX 2005 are pre-
sented and analyzed. Finally conclusions are given in Section 4. Graphical representa-
tions of our official results are given in the appendix. 

1.1   Structural Indices and Basic Weighting Schema 

In TRIX the management of structural aspects is based on the structural indices
[2,4,5,8]. The idea of structural indices in the context of XML is that the topmost 
(root) element is indexed by 1  and its children by 1,1 , 1,2 , 1,3  etc. Further, 
the children of the element with the index 1,1  are labeled by 1,1,1 , 1,1,2 ,
1,1,3  etc. This kind of indexing enables analyzing of the relationships among 

elements in a straightforward way. For example, the ancestors of the element la-
beled by 1,3,4,2  are associated with the indices 1,3,4 , 1,3  and 1 . In turn, any 
descendant related to the index 1,3  is labeled by 1,3,ξ  where ξ is a non-empty 
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part of the index. In the present approach the XML documents in the collection are 
labeled by positive integers 1, 2, 3, etc. From the perspective of indexing this 
means that the documents are identified by indices 1 , 2 , 3 , etc., respectively. 
The length of an index ξ is denoted by len(ξ). For example len( 1,2,2,3 ) is 4. Cut-
ting operation δi(ξ) selects the subindex of the index ξ consisting of its i first inte-
gers. For example if ξ = a,b,c  then δ 2(ξ) = a,b . In terms of the cutting operation 
the root index at hand is denoted by δ1(ξ) whereas the index of the parent element 
can be denoted by δlen(ξ)-1(ξ). 

The retrieval system, TRIX, is developed further from the version used in the 2004 
ad hoc track [3] and its basic weighting scheme for a key k is slightly simplified from 
the previous year: 

(1)

where  

• kfξ is the number of times k occurs in the ξ element,  
• N is the total number of content elements in the collection, 
• m is the number of content elements containing k in the collection, 
• ξfc is the number of all descendant content elements of the ξ element 
• ξfk is the number of descendant content elements of the ξ element containing k,
• v and b are constants for tuning the weighting.  

This formula is utilized only for such elements where kfξ  is greater than 0. This en-
sures that the ξfc  and ξfk are equal or greater than 1, because we define that the low-
ermost referable element, the content element, contains itself.  Otherwise the weight 
of an element for the key k is 0. The constants v and b allow us to affect the ‘length 
normalization component’ (ξfc /ξfk) or LNC and tune the typical element size in the 
result set. In our runs for INEX 2005 b is used for tuning, while v is set to 2. Small 
values of b (0-0.1) yield more large elements, whereas big values (0.8-1) yield more 
small elements. This is because the LNC tends to be large in small matching ele-
ments; it is likely that the smaller the ξfk value is the bigger is the LNC. A large b
value emphasizes the LNC component, whereas a small one the key frequency. While 
b is set to 0, the system considers the root element always to be the best one in a 
document, because in case of two overlapping elements have the same weight, the 
ancestor one is privileged. Table 1 shows the average distribution of top 100 elements 
in our result lists (Content only), when b is set to 0.1 and to 0.9. Testing the  
parameters in INEX collections has shown that value 2 for v gives a smooth overall 
performance and ranging b allows tuning the size of the elements in the result list. 
The underline overlap percentage is 0. In the table the ‘+’ sign means all the equiva-
lent tags. E.g. p+ means all paragraph tags: p, ip1, ip2 etc. 
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Table 1. The average distribution of top 100 elements, when b is set to 0.1 and to 0.9

 p+ sec+ bdy article 
b = 0.9 31.7 14.1 19.3 0.4
b = 0.1 8.8 13.1 42.2 8.6

The weighting formula yields weights scaled into the semi-closed interval (0,1]. 
The weighting of phrases and the operations for + and - prefixes have the same prop-
erty. They are introduced in detail in [3].  A query term is a key or phrase with a pos-
sible prefix + or -. A CO query q is a sequence of query terms k1, …, kn. In relevance 
scoring for ranking the weights of the query terms are combined by taking the average 
of the weights: 

    (2) 

After this basic calculation elements’ weights can be re-weighted. Next we con-
sider the used re-weighting method, called contextualization.  

1.2   Contextualization  

In our runs we use a method called contextualization to rank elements in more effec-
tive way in XML retrieval [1, see also 7]. Re-weighting is based on the idea of using 
the ancestors of an element as a context. In terms of a contextualization schema the 
context levels can be taken into account in different ways. Here we applied four dif-
ferent contextualization schemata. 

1) Root (denotation: cr1.5(q, ξ))
2) Parent (denotation: cp(q, ξ))
3) Tower (denotation: ct(q, ξ))
4) Root + Tower (denotation: crt(q, ξ))

A contextualized weight is calculated using weighted average of the basic weights of 
target element and its ancestor(s), if exists. Root contextualization means that the 
contextualized weight of an element is a combination of the weight of an element and 
its root. In our runs the root is weighted by the value 1.5. This is calculated as  
follows: 

cr1.5(q, ξ) =
5.2

))(,(*5.1),( 1 ξδξ qwqw + (3)

Parent contextualization for an element is an average of the weights of the element 
and its parent. 

n

kw
qw

n

i

i

== 1

),(
),(

ξ
ξ



 Query Evaluation with Structural Indices 137 

cp(q, ξ) =
2

))(,(),( 1)( ξδξ ξ −+ lenqwqw (4)

Tower contextualization is an average of the weights of an element and all its an-
cestors. 

ct(q, ξ) =
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1
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(5)

So called Root + Tower contextualizaton means the plain tower contextualization 
with root multiplied by two. This can be seen as a combination of parent and root 
contextualizations. 

crt(q, ξ) =
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Fig. 1. A tree presentation of an XML document illustrating different contextualization  
schemata 
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In Figure 1 the effects of the present contextualization schemata are illustrated.  
The basic weights are only sample values. In it, XML tree with elements assigned 
initial weights (w) and contextualized weights: Root (wr), Parent (wp) and Root + 
Tower (wrt) is given. For instance, element with index 1,1,2  has an basic weight of 
0.2. Parent contextualization means an average weight of 1,1,2  and 1,1 . Root is the 
weighted average of 1,1,2  and 1  where the weight of 1  has been multiplied by 
1.5. Root + Tower is the weighted average of weights of 1  , 1,1  and 1,1,2 , where 
the weight of 1  has been calculated twice.  

In [1] we have discovered that a root element carries the best evidence related to 
the topics and assessments of INEX 2004. However, contextualizing the root only has 
an effect on the order of elements in the result list, and it does not change the order of 
elements within a document. Generally, if we contextualize the weights of elements x 
and y with the weight of their ancestor z, the order of x and y will not change in the 
result list. Further, the mutual order of x, y and z will not change if no re-weighting 
(i.e. contextualization) method is applied to element z. The root element (article) 
possesses no context in our approach. Hence in the CO.FetchBrowse task, where 
documents have to be ordered first, the Root contextualization will not have an effect 
on the rankings of other elements. However, within a document there are still several 
other context levels, and by utilizing those levels, it is possible to re-rank elements 
within a document. This finding has been utilized in the CO.FetchBrowse task. 

1.3   Handling the Overlap in Results 

In Figure 2 two overlap models, which our system supports, are illustrated. First, an 
element to be returned is marked with a letter P. On the left side there is a situation where 
all overlapping elements are excluded from the result list, even if their weight would be 
sufficient, but smaller than P. In other words, P has higher score than its descendants or 
ancestors. The model indicates that the overlap percentage is 0. On the right side all ele-
ments can be accepted, regardless of their structural position in the document.  

Fig. 2. Two overlap models 

We have used the former (left) model in the CO.Focussed and CO.FetchBrowse 
tasks and the latter (right) model in the CO.Thorough and all of the CAS tasks. Next, 
we introduce the overall processing of CAS and the structural constraints involved. 
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2   Processing CAS-Queries 

In the CAS queries an element may have constraints concerning itself, its ancestors or 
descendants. These constraints may be only structural, or structural with content. For 
instance in query 

//A[about(.,x)]//B[about(.//C,y)] 

B is the structural constraint of a target element itself. A is a structural constraint of a 
target element’s ancestor, and is C target element’s descendants. All of these struc-
tural constraints have also content constraints, namely x or y. So, to be selected to a 
result list, an element must fulfil these constraints. The processing of CAS queries can 
be divided into four steps: 

• First step: Generate a tree according to the target element’s content constraint, 
and weight elements, which fulfil the target element’s structural constraint. 

• Second step: Discard all the target elements which do not fulfil the structural 
ancestor and descendant constraints. Due to the nature of hierarchical data, an-
cestors are always about the same issue as their descendants, i.e. they share the 
descendants’ keys. So the content constraints of descendant elements are taken 
into account here as well. 

• Third step: Generate trees according to each ancestor element’s content con-
straint. Discard elements, where the structural descendant and ancestor content 
constraint are not fulfilled, i.e. corresponding elements do not exist in any sub 
tree.

• Fourth step: Collect the indices of elements left in the third step fulfilling the 
ancestor structural constraint, and discard all of the target elements, which do 
not have such indices among ancestor elements. 

To clarify this, processing of a CAS query can be demonstrated with a sufficiently 
complex example. 

A query: 

//article[about(.//abs, logic programming)]//bdy//sec[about(.//p, prolog)] 

breaks down into following parts: 

- an element with structural constraint sec is the target element with content 
constraint prolog

- p is a structural descendant constraint of the target element with the same con-
tent constraint as sec : prolog

- article is a structural ancestor constraint of the target element with a content 
constraint logic programming 

- abs is a structural descendant constraint of article with the same content con-
straint logic programming 

- bdy is a structural ancestor constraint of the target element without any content 
constraints 
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In the first step, shown in Figure 3, we form a tree of elements with non-zero weights 
according to the query prolog. In other words all the elements with zero weights are 
discarded from an XML tree structure. 

Fig. 3. A tree presentation of a sample XML document having only elements with a weight 
greater than 0 according to the query prolog

In the second step (Figure 4), we exclude target element 3,3,2 , because the struc-
tural ancestor constraint bdy is not fulfilled. Element 3,2,3  is also to be excluded, 
because the descendant constraint p is not fulfilled.  

Fig. 4. A tree presentation of a sample XML document having only elements with a weight 
greater than 0 according to the query prolog, where target elements not fulfilling the constraints 
are excluded 
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Fig. 5. A tree presentation of a sample XML document having only elements with a weight 
greater than 0 according to the query logic programming

In the third step we form a tree with non-zero weights according to the query logic 
programming, as seen in Figure 5.  

In the tree, there is an abs element as a descendant of article, so both of the struc-
tural and content constraints are fulfilled. Hence, we take the index of the article: 3 ,
and see that the index belongs to a descendant of the remaining target element 3,2,5 .
So, this and only this element is to be returned from this document.  

2.1   Taking Vagueness into Account in CAS 

In the current evaluations there are four different kinds of interpretations for structural 
constraints for processing NEXI, in our approach the structural constraints are inter-
preted strictly. However for SVCAS, VSCAS and VVCAS the query has been modi-
fied. Our system handles vague interpretation so that the corresponding element 
names have been ignored. In NEXI language this can be implemented by replacing 
the names with a star. Thus we have modified CAS queries as follows: 

The initial CAS query (and SSCAS): 
//A[about(.,x)]//B[about(.,y)] 

SVCAS: 
//*[about(.,x)]//B[about(.,y)] 

VSCAS: 
//A[about(.,x)]//*[about(.,y)] 

VVCAS would then logically correspond to: 
//*[about(.,x)]//*[about(.,y)] 

For simplification we have processed VVCAS like a CO query. In the present exam-
ple VVCAS corresponds to the query: //*[about(.,x y)]. 
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3   Results 

3.1   CAS Runs 

In the content and structure queries, only elements which fulfil the constraints are 
accepted to the results. The ranking of the elements has been done according to the 
target element’s textual content. Besides the target element, other content constraints 
have been taken into account as a full match constraint without any weighting. This 
full match content constraint within a structural constraint has been interpreted in 
disjunctive way. It means, that only one occurrence of any of the keys in a sub query 
is sufficient enough to fulfil the condition. For instance in the query 

//A[about(.,x y z)]//B[about(.//C,w)] 

for B to be returned, it is sufficient that the A element includes only one of the keys x,
y or z. Naturally the B element should be about w, and also have a descendant C about 
w. This approach, the CAS processing with structural indices and the TRIX matching 
methods lead to fairly good results with the generalized quantization in all of the CAS 
tasks and especially in the SSCAS task (see Figure 6 in Appendix). Also the CO-style 
run in the VVCAS task (Figure 9) worked out fairly well. 

There was a slight error in our submissions of results. Accidentally we sent runs in-
tended for SVCAS for VSCAS, and vice versa. Figures 7 and 8 show the situation, 
where the “should have been”-runs are the thick upper ones in the nXCG curves. The 
overload of elements of wrong type led to a quite rotten score in SVCAS. Surpris-
ingly, despite the error, VSCAS results proved to be quite satisfactory. Especially, 
according to the early precision of our runs, the ranking was as high as 3rd and 4th in 
the generalized quantization and 3rd and 8th in the strict quantization of the nXCG 
metrics. However, in general the right interpretation of both of those tasks leads to a 
substantial improvement of effectiveness (see Figures 7 and 8). 

3.2   CO Runs 

In the CO runs we have used Root+Tower contextualization (Tampere_..._tower), and 
Root contextualization (Tampere_..._root). In addition we have applied a query  
expansion method from Robertson [6], taking 5 or 10 expansion words from 7 top 
documents from the first result set (Corresponding runs: Tampere_exp5_b09_root, 
Tampere_exp10_b01_root).  Figure 10 shows the slight improvement of the expanded 
run compared with a similar run without any expansion.  

Because of the prevention of overlapping elements, promoting large elements may 
not be wise in the focussed task. That is because if a large element is returned, then 
every descendant is excluded from the results. However, in thorough task promoting 
large elements is not that risky. Hence, we used small b values for the thorough and 
large values for the focussed runs. Favouring small elements might have caused an-
other kind of problem, though. In the relevance assessments many of the paragraph 
sized elements are marked as too small. That leads to a situation, where a whole rele-
vant branch is paralyzed, when a too small leaf element is returned. 
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In the topic 229 there is a spelling error "latent semantic anlysis", which in our sys-
tem would lead to a poor score. To minimize the error rate and also to improve recall, 
we have opened the phrases in all of the queries. For instance, query "latent semantic 
anlysis" would become "latent semantic anlysis" latent semantic anlysis. A manual 
correction of the mistake improves overall performance by 1-2 percentage depending 
on the task. These features and also the effect of the contextualization improve recall 
and scores in the generalized quantization, although the early precision suffers 
slightly (see Figures 10 and 11). A run without contextualization improves the early 
precision from 0,1657 to 0,2401 in CO.Focussed task with generalized quantization 
(nxCG@10). Accordingly the ep/gr value improves slightly as well. 

4   Conclusions

This paper presents our experiments and results at INEX 2005. The results for the CO 
task show that Root contextualization is not generally better than Root + Tower, except 
for the early precision. In general, our approach is in many runs quite recall oriented, and 
we also do better in the generalized than strict quantization. Therefore, improving top 
precision in all tasks and quantizations remains as one of our primary goals.  

This was the first time we participated in (strict) CAS task. The analyzing power of 
structural indices enables a straightforward processing of CAS queries. In addition, 
results in INEX 2005 give a good baseline for future development. 
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Appendix 

Fig. 6. SSCAS: The EP/GR and nXCG curves of the generalized quantization 

Fig. 7. VSCAS: The EP/GR and nXCG curves of the generalized quantization 

Fig. 8. SVCAS: The EP/GR and nXCG curves of the generalized quantization 
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Fig. 9. VVCAS: The EP/GR and nXCG curves of the generalized quantization 

Fig. 10. CO.Focussed: The EP/GR and nXCG curves of the generalized quantization 

Fig. 11. CO.Thorough: The EP/GR and nXCG curves of the generalized quantization 
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Abstract. The focus in this article is on the use of structural hints to
increase the retrieval performance of models for structured document re-
trieval. Based on an effective model for structured document retrieval for
‘content only’ queries, two extensions are defined that allow the retrieval
model to include structural hints provided by the user into the retrieval
process. The underlying hypothesis states that if the user is capable of
providing structural clues, besides the content-based criteria of his/her
information need, the retrieval performance can be increased. To test
this hypothesis the two extensions are evaluated using a selection of the
retrieval tasks defined for the INEX 2005 Ad-hoc track.

1 Introduction

Structured document retrieval, also referred to as XML retrieval, focusses on the
retrieval of (XML) document fragments, rather than complete documents. By
exploiting the structure of a document a user no longer has to read/scan entire
articles, but is pointed directly towards the relevant sections of the article that
match the user’s information need.

A user can simply express his information need using a combination of search
terms, also known as a Content-Only (CO) query. This will allow the retrieval
model to retrieve literally any document fragment. Alternatively, the user can
specify additional structural constraints that limit the retrieval model to retrieve
only those document fragments that satisfy the structural constraints. Within
INEX, the INitiative for the Evaluation of XML retrieval [1], this is referred to
as a Content-and-Structure (CAS) query.

Characteristic for information retrieval is the notion of relevance of retrieved
information for a given information need. In the case of structured document
retrieval relevant information can be excluded from the results, if a strict inter-
pretation of the structural constraints is used. This is not necessarily a problem,
if the user is confident that the requested information is to be found within the
specified section. Otherwise, the structural constraints should merely be inter-
preted as structural hints by the underlying retrieval model.

This distinction in interpretation of the structural constraints is reflected in
the various retrieval tasks set for the INEX 2005 Ad-hoc track[2]. Besides the
CO-based tasks, a number of CO+S and VVCAS tasks have been defined, where

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 146–160, 2006.
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the user model is based on a vague interpretation of the structural constraints.
In addition, a so called SSCAS task is defined, where the structural constraints
of the user information need should be interpreted strictly.

The objective in this article is to study the effect of structural hints on the
retrieval performance. Three cases can therefore be distinguished: 1) The user
information need contains no structural clues about where to find the relevant
information in the document; 2) The user information need contains structural
hints of where to find the relevant information, but the user is not fully confident
about these structural constraints; 3) The user is fully confident about where the
relevant information is captured in the document, and the structural constraints
should be strictly interpreted.

The underlying hypothesis used for the research presented in this article states
that the effectiveness of the retrieval model can be increased, if structural hints
are provided by the user. For this purpose, the GPX retrieval model for XML
retrieval [3] is adopted by the B3-SDR system as the basic retrieval model.
This relatively simple, yet effective, model performs very well on the CO tasks
defined for INEX. But, the model has no build-in mechanism to actively reward
the structural hints defined for the topics that are used in the CO+S and VVCAS
tasks.

Two extensions have been defined that use the structural clues to drive the
retrieval process. The first extension rewards document fragments that (partly)
fulfil the structural requirements of the information need, causing them to ap-
pear higher in the ranking. For example, if the user expects that the requested
information is found in the abstract of an article, then the relevance score of
a document fragment is increased, if its path contains the requested elements.
The second extension penalises those document fragments that contain excessive
elements in their path. In this case the relevance score of a document fragment
decreases, if its path contains additional elements that are not specified in the
information need. For instance, if only a paragraph of an abstract is returned
while the entire abstract was requested, the relevance score of this particular
fragment is lowered.

The effect of the extensions on the retrieval performance is evaluated using the
‘thorough’ tasks defined for the INEX 2005 Ad-hoc track, e.g. the CO.Thorough,
CO+S.Thorough, VVCAS and SSCAS tasks. The objective of these tasks is to
retrieve all highly exhaustive and specific XML elements. Comparison of the
results for the different tasks, should provide new insights in the effectiveness of
structural hints on the retrieval performance.

1.1 Organisation

In Section 2 the basic model for structured document retrieval is discussed.
The extensions to the model that include the structural hints into the retrieval
process are defined in Section 3. The evaluation results are then discussed in
Section 4. Finally, the conclusions and future work are presented in Section 5.
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2 Basic Model for Structured Document Retrieval

Many, if not all, of the retrieval models used for structured document retrieval
are based on existing text retrieval strategies. The retrieval model that was
introduced by [3], and integrated in the B3-SDR system is primarily based on
an inverted file [4] structure commonly used for text retrieval.

2.1 Data Structure

In Example 1, a fragment of the inverted file is given that is created when
indexing the XML-based Docbook [5] version of this article. Each entry of the
inverted file consists of the quadruple: term, document, path, position. Two pre-
processing operations [6], lexical cleaning and stop-word removal, are used to
produce the inverted file. Stemming is used as an optional post-processing step.

Example 1. Fragment of inverted file.
term document path position
many a007.xml /article[1]/section[2]/para[1] 1
retrieval a007.xml /article[1]/section[2]/para[1] 7
models a007.xml /article[1]/section[2]/para[1] 8
structured a007.xml /article[1]/section[2]/para[1] 11
document a007.xml /article[1]/section[2]/para[1] 12
retrieval a007.xml /article[1]/section[2]/para[1] 13
...

The B3-SDR system uses Monet [7], a binary relation DBMS, to store and query
the inverted file structure. Due to the many elements that exist within an XML
document, the size of the inverted file will grow rapidly.

To maintain a reasonable system performance, the inverted file structure is
normalised according to the schema presented in Figure 1. The table NodeInfo
stores information about each XML element, which can be uniquely referenced
by its nodeId. Besides the nodeId, a reference to its parent (parentNode), the
name of the element (nodeName), and the name of the document (document)
and the unique path to the node (path) within the document is stored for each
XML element.

The table TermLeaveWeight is sorted on the term name and contains the
attributes: termWeight, nodeId, and position. TermWeight and nodeId are used
to connect the relevance weight of a term found within a specific node. The
attribute position[] contains an array of term positions within a node for a par-
ticular term. This is used to detect term phrases, which are specified in the
information request.

To speed up the query process a termindex is maintained. For each term, spec-
ified in the information request a slice is taken from the table termLeaveWeight
that starts at position startPos and ends at endPos. This can be considered a
‘dynamic’ horizontal fragmentation of the inverted file. When stemming is used,
a query term is stemmed first, and the stem attribute is used to select stemmed
terms that match the query term.
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NodeInfo
nodeId parentNode nodeName document path

TermLeaveWeight
termWeight nodeId position[]

TermIndex
term stem startPos endPos

Fig. 1. Optimised (relational) database schema of the inverted file structure

2.2 Retrieval Model

During the post-processing step, a term weight tw is calculated for each unique
term within a leave node, using the following formula:

tw =
ti
fi

, (1)

with:

– ti: the number of occurrences of term i in XML leave node.
– fi: the number of occurrences of term i in the entire XML document collec-

tion.

CO queries. When a content-only (CO) query is processed, the first step is to
calculate the relevance weights for each of the leave nodes. The relevance weight
L of a leave node is calculated as:

L = Ft
n−1

n∑
i=1

twi , (2)

with:

– twi : the relevance weight of term i for an XML leave node.
– n: the number of unique query terms, that occur within an XML leave node.
– Ft: a term factor used to scale up leave elements with multiple distinct terms.

The formula of Equation 2 sums over the term weights that are found within
a leave node, and multiplies that with the term factor (Ft) to the power of the
number of terms that are found in the node. The effect is that leave nodes con-
taining more relevant query terms will appear higher in the ranking. According
to heuristic experiments carried out by [3] best retrieval performance is achieved
with a term factor Ft of 5.

The next step involves calculating the relevance scores NCO of the ancestor
nodes, given the set of retrieved leave nodes. The (final) relevance weight NCO

of an arbitrary node is calculated with the formula:

NCO = D(m)
m∑

i=1

Li, (3)
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with m being the number of child elements L, with Li > 0; and decay function
D(m) defined as:

D(m) =

{
Dsingle if m = 1,
Dmultiple if m > 1.

(4)

The decay function D(m) regulates the relevance weights inherited from the
child nodes. If a node X has only one child with Li > 0, then the relevance
of node X is lower than of its child node. In other words, its better to return
the child node, since the child node will have a higher specificity. If there are
more than one children of node X , for which Li > 0, node X is likely to be
more exhaustive than its children, which should be rewarded. Without such a
decay function, e.g. with Dsingle and Dmultiple set to 1, elements close to the
document root will always be judges more relevant than its child nodes, which
is counter intuitive. Usable values for Dsingle and Dmultiple are within the range
< 0, 1]. According to [3] suitable values for Dsingle and Dmultiple are 0.49, and
0.99, respectively.

CAS queries. A bit more complex is the procedure followed to produce a rank-
ing for NEXI CAS queries. A CAS query always contains one or two filters [8].
E.g. a filter is specified with the square brackets ( [...] ) and can contain one
or more about-clauses that define the content-based search criteria of the in-
formation need. Furthermore, the CAS query has to end with a filter, limiting
the possible forms of a CAS query to: C[D] or A[B]C[D]. Consider the following
example CAS query:

//article[about(., "retrieval model") and about(.//title, structured

document retrieval)]//para[about(., XML retrieval)]

This CAS query contains two filters and is of form A[B]C[D]. This query
can be split in two queries: a support query (A[B]), and a request query (AC[D]).
Applying this to the example would give:

Support query:

//article[about(., "retrieval model") and about(.//title, structured
document retrieval)]
Request query:
//article//para[about(., XML retrieval)]

The request query defines the desired element of retrieval, in this case a para-
graph, discussing ‘XML retrieval’, while the support query specifies additional
constraints of the information need.

When a strict interpretation of the structural constraints is used to obtain
a ranking, the following procedure is followed for both the support and request
query:

1. Evaluation of the about-clauses: An initial ranking is produce for each about-
clause, as if it is a CO query.

2. Filtering the initial rankings: Each ranking is filtered to match the path
conditions specified in the about-clause, e.g for one of the about-clauses in
the example this will be: //article//title.
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3. Projection of the relevance score values (rsv): In strict mode, only article
elements should be returned by the system for the support query. Therefore
the rsv values in the ranking for an about-clause, are transposed to match
the article element.

4. Combinatory logic is used to combine different the rankings within a filter.
5. Finally, a min-max normalisation step is used to scale the rsv values to fit

the [0, 1] range.

Two sets of rankings remain, one for the support query and one for the request
query. Only those nodes of the request query are returned that have a matching
ancestor in the support query.

When using a vague interpretation of the structural constraints, instead of a
strict interpretation, the ranking is simply extended with each of the intermedi-
ate results not yet contained in the ranking. As a result, the structural hints are
ignored.

3 Using the Structural Hints

The two extensions to the retrieval model presented in this section aim at inte-
grating the structural hints, when processing a CAS query in the vague inter-
pretation mode. The path factor extension rewards those nodes that (partially)
match the path conditions of the query. The request penalty factor is used to
penalise those nodes that contain excessive elements not specified in the query
in their path.

3.1 The Path Factor Extension

Applying the path factor extension to a (ranked) list of nodes, will push those
nodes to the top of the list that (partially) match the path elements specified in
the (support or request) query. It is expected that the top of the ranking will then
contain highly relevant XML elements that also satisfy all the structural criteria
of the information need, followed by highly relevant elements that only partially
(or not) match the structural criteria. The path factor extension corrects the
relevance score that is computed for a node using the following formula:

NV CAS+Fp = Fp
eNCO (5)

with:

– NCO: the relevance score of an XML node, based on the content-only part
of an about-clause.

– e: the number of path elements that match the path conditions of the query.
– Fp: A path factor used to reward nodes that satisfy structural constraints

(< 1, ∞]).

This straightforward manipulation of the ranking increases the relevance scores
of those XML nodes that satisfy the structural criteria of the information need.
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Let the path factor Fp for example be set to 4, then the relevance score of a
node that has two matching (ancestor) elements in its path, will be increased
by a factor 16. It is hard to predict what would be suitable values for Fp, since
this also depends on the confidence of the user in the appropriateness of the
structural hints. In Section 4, the results are presented for different values of Fp,
and their influence on the retrieval performance.

3.2 The Request Penalty Factor

The request penalty factor will decrease relevance scores of those nodes that
contain excessive elements in their path, which are not specified in the query.
Contrary to the path factor extension, the request penalty factor can only be
used to re-rank the final set of results of a query, i.e. the result set that is obtained
after merging the intermediate results of the (optional) support query with the
request query. For ease of notation, the relevance score of a node, contained in
this set is referred to as NV CAS . The relevance score NV CAS+Fr , after applying
the request penalty factor, is then calculated as:

NV CAS+Fr = Fr
p−eNV CAS (6)

with:

– NV CAS : the relevance score of the XML node.
– p: the path length of the XML node.
– e: the number of path elements that match the structural constraints of the

query.
– Fr: a request penalty, used to penalise for excessive path elements (< 0, 1]).

It is expected that the request penalty factor decreases the relevance scores of
the ‘too small’ elements that are particularly found near the leaves of the XML
tree structure, i.e. titles of sections, or pieces of text that an author wants to
emphasise on. Such elements are too small to be judged relevant, outside their
surrounding context [2]. Although the retrieval of too small XML elements can
be considered a usability issue that can be solved at the interface, applying the
penalty factor can also be an effective apparatus to allow the user to directly
manipulate the ranking, and filter small elements from the top of the ranking.

4 Evaluation

The evaluation of the retrieval model, and in particular the evaluation of the
extensions for using structural hints, will focus on the thorough tasks that are
defined for INEX 2005. The aim of the thorough retrieval strategy is to retrieve
all highly exhaustive and specific elements[9]. Within this task, it is allowed to
return overlapping elements. If a child element is relevant, then so will be the
ancestor(s) of that element to a greater of lesser extent. Overlap is not considered
an issue within this task, as it should be dealt with at the user interface, upon
presenting the results.
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In the subsections below the results are presented for the following tasks:
CO.Thorough, CO+S.Thorough, VVCAS, and SSCAS. The user model defined
for the CO.Thorough task assumes that the user information need does not con-
tain any structural hints, and therefore allows for the evaluation of (the configu-
ration of) the basic retrieval model. The extensions of the model that incorporate
structural hints into the retrieval process are evaluated in the CO+S.Thorough
and VVCAS tasks. These tasks take the structural hints defined in the informa-
tion request into account, using a vague interpretation. Finally, the SSCAS task
allows for the evaluation of retrieval strategies, based on a user model that uses
a strict interpretation of the structural constraints defined in the information
request.

4.1 Metrics

A number of official metrics are defined for the evaluation of retrieval strategies
within INEX[10]. In this article a sub-set of these metrics is used. For each task,
a summary of the results is given where for each run the following metrics are
reported: iMAep, nxCG[10],nxCG[50],nxCG[100],and nxCG[1500].

The iMAep, short for interpolated Mean Average effort-precision, is calculated
as the average of effort-precision values at the standard gain-recall points. The
nxCG[i] values, normalised extended Cumulated Gain for a given rank i, reflect
the relative gain the user accumulated up to that rank, compared to the gain
he/she could have attained if the system would have produced the optimum best
ranking.

For each of these metrics both overlap and quantisation can be differentiated.
Overlap, as discussed before is allowed for the Thorough tasks (overlap=off).
The quantisation function has two modes: strict and general. If the evaluation is
performed with the quantisation function in strict mode, an element is considered
relevant (1) for a given information need, if it contains highly exhaustive and
highly specific information. If the evaluation is run with the quantisation function
in general mode, an element is relevant (exh ∗ spec), if it contains any degree of
exhaustive and specific information. A more detailed description of the metrics
can be found in [10].

Since the objective of the thorough tasks is to retrieve all highly exhaustive
and specific elements, only the results based on the strict quantisation function
are reported here. In general, the comparison of the results with the generalised
quantisation function showed that the results are (1) almost similar, but (2)
more discriminative when using the strict quantisation function.

4.2 Task: CO.Thorough

For a CO.Thorough run, four parameters need to be set. The following nota-
tion is used to identify a particular run for the CO task: co[stem, Ft, Dsingle,
Dmultiple], where stem is a boolean value indicating the use of stemming, Ft

refers to the value used for the term factor, and the Dmultiple and Dsingle refer
to the multiplication factors used by the decay function D(m).
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The evaluation of the basic retrieval model can be split in two steps, using the
CO.Thorough task. The first step is to examine the effect of the term factor on
the retrieval performance. In Table 1.a the summary statistics are given, when
using a term factor of 1, 3, 5, 10, and 20. Figure 2.a shows the performance of the
different runs using the nxCG measures at different (%) positions in the rank-
ing. It reveals that the performance stabilises for larger values of Ft (5,10, 20).
Without the term factor, e.g. Ft = 1, the model has the lowest performance. To
evaluate the optimal configuration of the other parameters of the model, a term
factor Ft of 5 is used. The performance is near optimal, and using larger values
of Ft would increase the differences between rsv values and reduce the (visible)
effects of the structural extensions to the basic model.

When comparing runs co[0,5,.49,.99] and co[1,5,.49,.99], it becomes clear that
stemming is not a useful feature to increase the effectivity of the retrieval perfor-
mance. Therefore, stemming will not be used in the remainder of the experiment.

Table 1. Task: CO.Thorough - summary statistics

Task id iMAep nxCG[10] nxCG[50] nxCG[100] nxCG[1500]
co[0,1,.49,.99] 0.0088 0.004 0.0622 0.114 0.3371
co[0,3,.49,.99] 0.0145 0.0324 0.0892 0.1695 0.4154
co[0,5,.49,.99] 0.0153 0.0337 0.1513 0.1909 0.4149

co[0,10,.49,.99] 0.0162 0.0422 0.1597 0.1924 0.4194
co[0,20,.49,.99] 0.0159 0.0422 0.1586 0.19 0.4129
co[1,5,.49,.99] 0.0059 0.0124 0.0561 0.0746 0.3031

(a) Variation in term factor values
Task id iMAep nxCG[10] nxCG[50] nxCG[100] nxCG[1500]

co[0,5,.25,1.0] 0.0187 0.0462 0.1473 0.1799 0.4444
co[0,5,.49,.99] 0.0153 0.0337 0.1513 0.1909 0.4149
co[0,5,.79,.99] 0.0137 0.028 0.1392 0.1888 0.4073
co[0,5,.99,.99] 0.0129 0.032 0.0927 0.1856 0.4009
co[0,5,.99,.49] 0.0269 0.0884 0.1638 0.1996 0.4519
co[0,5,1.0,1.0] 0.0149 0.028 0.0911 0.1742 0.4026
co[0,5,2.0,1.0] 0.0059 0.02 0.0254 0.0884 0.3185

co[0,5,10.0,20.0] 0.0005 0 0.008 0.008 0.0708
(b) Variation in decay values

The second step in the evaluation of the basic model focusses on different
values for decay function D(m), for which the results are presented in Table 1.b
and Figure 2.b. Natural values for Dsingle and Dmultiple are in the range of
< 0, 1], but the results also show the performance for runs with D(m) values
higher than one. Using such values will cause the model to position those XML
elements in the top of the ranking, that are close to the document root. As can
be expected, the effectivity will drop, because the specificity of (large) XML
elements is usually low. For the runs that are within the pre-defined range little
variation is observed. Interesting to see is that a small increase in effectivity is
gained at the top of the ranking for values of D(m) with Dsingle > Dmultiple,
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Fig. 2. Task: CO.Thorough

i.e. such as is the case for run co[0,5,.99,.49]. This behaviour requires further
investigation, and can currently not be explained. With the D(m) values set
to: Dsingle = .49 and Dmultiple = .99 the most fluent increase in effectivity is
achieved. Therefore this setting of D(m) is used for the evaluation of the other
features of the retrieval model.

Based on the observations for the CO.Thorough task, the following setting of
the basic model is used for the evaluation of the CO+S.Thorough, VVCAS, and
SSCAS tasks: co[0,5,.49,.99].

4.3 Task: CO+S.Thorough

The objective of the CO+S.Thorough run is to evaluate the retrieval of highly
exhaustive and specific elements that contain relevant content. Structural hints
are used in addition to the content-oriented information need.

To uniquely identify a run for the CO+S.Thorough and VVCAS and SSCAS
tasks, the following notation is used: vague[Fp, Fr]. Fp represents the path factor
value that is used for the run, while Fr refers to the request penalty factor.
Whenever one the the values is set to 1, the corresponding extension is disabled.
the prefix vague is used to denote that the run interprets the structural aspects
of the information need as a hint (vague), while the prefix strict is used to
identify runs that were constructed using a strict interpretation.

This task is therefore suitable to evaluate the effect of the structural extensions
on the retrieval performance. The results of the evaluation for the path factor
extension are given in Table 2.a and Figure 3.a. When observing the results
for the variation in path factor values, it becomes clear that the path factor
extension has a positive effect on the retrieval performance. In particular it
improves the effectiveness at the lower recall levels. The strict run is also plotted
here to illustrate the difference in performance, when the structural aspects of
the information need should be interpreted strictly. From this behaviour it can
be concluded that it is useful to specify structural hints to improve the retrieval
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Table 2. Task: CO+S.Thorough - summary statistics

Task id iMAep nxCG[10] nxCG[50] nxCG[100] nxCG[1500]
strict[] 0.0038 0.0065 0.0312 0.0261 0.0646

vague[1,1] 0.0091 0.0235 0.0716 0.1067 0.3428
vague[5,1] 0.0143 0.0529 0.1204 0.2153 0.3496

vague[10,1] 0.0149 0.0529 0.1351 0.2202 0.3526
vague[20,1] 0.0151 0.0529 0.1351 0.2164 0.3524

(a) Variation in path factor values
Task id iMAep nxCG[10] nxCG[50] nxCG[100] nxCG[1500]

vague[1,1] 0.0091 0.0235 0.0716 0.1067 0.3428
vague[1,.25] 0.0054 0.0235 0.0159 0.0218 0.2972
vague[1,.5] 0.0211 0.0712 0.059 0.0952 0.3206
vague[5,1] 0.0143 0.0529 0.1204 0.2153 0.3496

vague[5,.25] 0.0062 0.0235 0.0454 0.0512 0.2964
vague[5,.5] 0.0436 0.0712 0.0982 0.1687 0.3238

(b) Variation in request penalty factor values
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Fig. 3. Task: CO+S.Thorough

performance, especially if the user is not fully confident about what kind of
information he/she is looking for.

The results for the request penalty factor extension are less positive, as shown
in Table 2.b and Figure 3.b. When studying the vague[5,*] runs in Figure 3.b it
becomes clear that the combination of the two extensions is not resulting in a
visible increase in retrieval performance. While the iMAep values suggests that
the effectivity doubles when Fr = .5. However, choosing smaller values for Fr

will cause the performance to drop significantly. Observing the vague[1,*] runs
shows similar behaviour for the nxCG-plots, and even larger differences for the
iMAep values. Most likely, the iMAep is sensitive for a good performance at the
top of the ranking, see for comparison nxCG[10] scores of the vague[*,.5] runs.
Without the path factor extension activated, these differences are even larger.
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4.4 Tasks: VVCAS and SSCAS

To objective of the VVCAS and SSCAS tasks is almost similar to the CO+S.Tho-
rough task. However, in the CAS tasks it is specified explicitly where to look
for relevant information (support query), and what to return (request query)[2].
Either one of these conditions can be executed using a strict or vague interpre-
tation, hence four different sub-tasks can be defined. Here the focus is on the
VVCAS and the SSCAS tasks, where the support and request queries are both
interpreted vaguely and strict, respectively.

Task: VVCAS In Table 3.a and Figure 4.a the results are presented for the
VVCAS task, when only the path factor extension is used. From the figure,
it becomes clear that the runs with a Fp > 4 perform equally well, while the
iMAep values suggest that higher values of Fp (10, 20) are more effective. This
is inline with the behaviour as observed for the path factor extension in the
CO+S.Thorough task.

One of the observations for a request penalty factor of 0.5 in the CO+S.Tho-
rough task was that according to the iMAep and nxCG[<50] measures a small in-
crease in effectiveness is gained. The results presented in Table 3.b and
Figure 4.b contradict this observation for the VVCAS task. Further increas-
ing the request penalty factor (0.8 and 0.9) shows that little or no additional
gain is achieved, according to the iMAep measure.

Task: SSCAS Within the SSCAS task the user model is adjusted to examine
the retrieval performance of the system when the user is fully confident in the
structural requirements of his/her information need. In effect, the assessment
pool is adjusted to fit only the elements specified in the query. With respect
to the structural extensions defined in this article, it is useful to examine the
behaviour of the runs when the user has indeed a ‘strict’ information need, but
the retrieval model treats the structural requirements as hints.

Table 3. Task: VVCAS - summary statistics

Task id iMAep nxCG[10] nxCG[50] nxCG[100] nxCG[1500]
strict[] 0.0197 0.1111 0.1222 0.1173 0.1613

vague[1,1] 0.0232 0.1444 0.1276 0.1294 0.5535
vague[5,1] 0.0334 0.1889 0.1571 0.1931 0.5815

vague[10,1] 0.036 0.2111 0.1615 0.1975 0.5883
vague[20,1] 0.0366 0.2111 0.1637 0.1998 0.5881

(a) Variation in path factor values
Task id iMAep nxCG[10] nxCG[50] nxCG[100] nxCG[1500]

vague[1,1] 0.0232 0.1444 0.1276 0.1294 0.5535
vague[1,.5] 0.0164 0.0667 0.0384 0.05 0.3701
vague[1,.8] 0.0248 0.0889 0.0882 0.0909 0.5585
vague[1,.9] 0.0223 0.0667 0.0793 0.1408 0.5597

(b) Variation in request penalty factor values
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Fig. 4. Task: VVCAS

Table 4. Task: SSCAS - summary statistics

Task id iMAep nxCG[10] nxCG[50] nxCG[100] nxCG[1500]
strict[] 0.091 0.175 0.4194 0.4423 0.7028

vague[1,1] 0.025 0.025 0.0689 0.0716 0.5951
vague[5,1] 0.047 0.1 0.1128 0.3456 0.622

vague[10,1] 0.054 0.15 0.1228 0.3557 0.6372
vague[20,1] 0.057 0.15 0.1278 0.3607 0.6408

(a) Variation in path factor values
Task id iMAep nxCG[10] nxCG[50] nxCG[100] nxCG[1500]

vague[1,1] 0.025 0.025 0.0689 0.0716 0.5951
vague[1,.5] 0.026 0.1 0.045 0.0592 0.3132
vague[1,.8] 0.025 0.025 0.0789 0.0805 0.567
vague[1,.9] 0.024 0 0.0639 0.0956 0.5872

(b) Variation in request penalty factor values

Table 4 and Figure 5 presents the results of the same runs as used for the
VVCAS task, but now based on the restrictions of the SSCAS task.

Focussing on the path factor extension again (Table 4.a and Figure 5.a) it is
clear that the strict run is now most effective. However, the results also show
that the retrieval performance increases for the vague runs, when the path fac-
tor extension is enabled. This is only possible, when the support and request
elements of the retrieved document fragments exactly match the structural con-
straints of the query. From this behaviour it can be concluded that the path
factor extension successfully re-ranks the results, obeying the structural hints
specified by the user.

Table 4.b and Figure 5.b show the results of the request penalty extension for
the SSCAS task. It reveals no new information, but confirms the earlier inconsis-
tent observations. It therefore must be concluded that the request penalty factor
extension has no significant and consistent contribution to the effectiveness of
the retrieval performance.



B3-SDR and Effective Use of Structural Hints 159

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

n
o
rm

a
li
s
e
d
 C

u
m

u
la

te
d
 G

a
in

Rank as %

Task: SSCAS
Metric: nRnxCG; Overlap: off; Quantisation: strict;

strict[]
vague[1,1]

vague[10,1]
vague[20,1]
vague[5,1]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

n
o
rm

a
li
s
e
d
 C

u
m

u
la

te
d
 G

a
in

Rank as %

Task: SSCAS
Metric: nRnxCG; Overlap: off; Quantisation: strict;

vague[1,1]
vague[1,.5]
vague[1,.8]
vague[1,.9]

(a)Variation in path factor values (b)Variation in request penalty factor values

Fig. 5. Task: SSCAS

5 Conclusions

The research presented in this article contributes to one of the focal areas of the
INEX 2005 Ad-hoc track: Can structural hints be used effectively. In other words,
can structural clues about where to find relevant information in the document
be used to increase the retrieval performance. To answer this question, three
types of user models are distinguished, that vary over the interpretation of the
structural conditions of the information need: ignore, vague, and strict. These
user models are implemented in the different tasks set for the Ad-hoc track, and
correspond with the CO, CO+S/VVCAS, and SSCAS tasks respectively.

To investigate this, a model for structured document retrieval is adopted that
was first introduced by [3]. This basic model is especially effective for the CO
and SSCAS tasks, but lacks a mechanism to rewards the structural hints when
a vague interpretation is used. Therefore two extensions are introduced that
take the structural hints into account. The path factor extension rewards nodes
that contain elements in their path, which are also specified in the query. The
request penalty extension is used to penalise nodes, when excessive elements are
contained in the path, which are not defined in the query.

The following can be concluded based on the results presented in this article:

– Comparing the best performing runs, discussed in Section 4, for the different
tasks shows that the runs can easily compete with the top ranked runs,
reported for the official runs. Note that the official runs submitted for the
B3-SDR system suffered from a serious sorting bug, and had to be discarded.

– The results for the CO.Thorough task revealed that the co[0,5,.49,.99] has
reasonable performance and is a good candidate for comparing the different
user models. Best performance, however is reported for the co[0,5,.99,.49]
run.

– The CO+S and VVCAS tasks allowed for the evaluation of the extensions
that incorporate the structural hints into the retrieval process. Comparing
the various runs, clearly revealed a significant increase in effectiveness, when
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the path factor extension was enabled. Best performance was obtained with
a path factor of 20. Additional experiments are needed to find out if this is
the optimal configuration.

– Evaluation of the request penalty factor extension, revealed contradicting
observations: Based on the CO+S.Thorough task, an increase in performance
was visible when a request penalty factor of .5 is used, however a decrease
in effectivity is observed when using the same request penalty factor for the
VVCAS task. Therefore, it is concluded that this extension is not effective
from a system point of view. Additional studies and future research should
determine whether this feature is useful from a usability perspective.

Finally, based on the comparison of the results for the VVCAS and SSCAS task,
if can be concluded that structural hints have a positive effect on the retrieval
performance regardless of the interpretation mode that is used.
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Abstract. This is the first year for the Centre for Interactive Systems Research 
participation of INEX. Based on a newly developed XML indexing and re-
trieval system on Okapi, we extend Robertson’s field-weighted BM25F for 
document retrieval to element level retrieval function BM25E. In this paper, we 
introduce this new function and our experimental method in detail, and then 
show how we tuned weights for our selected fields by using INEX 2004 topics 
and assessments. Based on the tuned models we submitted our runs for 
CO.Thorough, CO.FetchBrowse, the methods we propose show real promise. 
Existing problems and future work are also discussed. 

1   Introduction 

Being an important data exchange and information storage standard, XML is now 
widely used, especially for scientific data repositories, Digital Libraries and on the 
Web. Many sophisticated systems [1, 2, 3, 4, 5] and retrieval models [6, 7, 8, 9, 10] 
for XML documents have been proposed.  

XML documents often contain sub-fields (elements), e.g. INEX collections from 
IEEE contain fields such as title, abs, bdy, bm, st etc. Practitioners have found it bene-
ficial to exploit the document’s internal structure to improve retrieval performance 
[11]. Researchers have looked at various techniques in order to investigate this prob-
lem. Wilkinson [12] and Ogilvie et al [13] have proposed and tested different ways to 
weight and combine the scores obtained on different fields of a document; Kraaij et al 
[14] propose a flexible algorithm based on language models but have not imple-
mented it; and Myaeng et al [15] combine terms found in different document repre-
sentations using Bayesian inference networks. Robertson et al [11] give a more  
detailed review of this area in their paper.   

In practice, many systems use a linear combination of the scores obtained  
from scoring every field due to the complexity of the ranking algorithms deployed. 
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Robertson et al [11] discuss the dangers of linear combination in detail and propose 
an alternative solution, the linear combination of term frequencies based on BM25 
(BM25F will be used in the rest of the paper instead of “field-weighted models based 
on BM25”), to extend standard ranking functions to multiple weighted fields. Their 
experiment based on two existing collection Reuters vol. I collection and the 2002 
TREC Web-Track crawl of the .gov for document level retrieval shows that the 
method was beneficial. Some related work using Okapi, BM25 or field combination 
in INEX 2004 is documented in [16, 17, 18, 19, 20]. 

In this paper, we extend this method further to element level XML retrieval based 
on INEX 05 collections. In section 2, we discuss in detail the field-weighted models. 
Section 3 further illustrates the experiment of this method on INEX 05 and Evaluation 
results are reported in section 4. A conclusion and further work to be undertaken are 
described at the end.  

2   BM25F Model 

In this section we describe the BM25F model in detail. We first introduce the models 
for document level weighting in section 2.1. And then we further discuss the imple-
mentation of the model to XML element level retrieval. 

2.1   BM25F for Document Level Weighting 

BM25F is the field-weighted version of BM25. It is derived from Robertson et al [11] 
for document level retrieval. For ad-hoc retrieval, and ignoring any repetition of terms 
in the query, BM25 can be simplified to [11]: 

where C denotes the document collection, tf j is the term frequency of the jth term  
in document d, df j is the document frequency of term j, dl is the document length, 
avdl is the average document length across the collection, and 1k  and b are tuning 

parameters.  
Then the document score is obtained by term weights of terms matching the  

query q: 

BM25F is based on a linear weighted combination of term frequencies across 
fields. It can be defined as follows: 
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where jtf '  denotes the weighted term frequency of the jth term in d, 'dl is the 

weighted document length, 'avdl  is the weighted average document length across the 

collection, 1
'k  is the weighted free parameter. 

Suppose we have nF fields f = 1, . . . , nF. In a given document d, term j has fre-
quency fjdtf ,,  in field f. There are various ways of defining the length of fields or 

documents, but the simplest way is to use the number of indexed terms (tokens). This 
means that the length of the field in this document is 

where V is the vocabulary, i.e. all indexed terms. 
With no field weighting, the term frequency of t in the whole document is 

and the document length is 
 

Average document length is 

 
With field weights Wf, these are modified as follows: 
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where atf is the average term frequency. 

Function (3) is used for document weighting. However XML retrieval requires not 
only document level but also element level retrieval. This means an algorithm for 
element weighting is required. In section 2.2, we further discuss the field-weighted 
weighting function for element level retrieval (BM25E) derived from function (3). 
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2.2   Proposed Model BM25E for Element Weighting 

From function (3), we can see that linear combination of weighted field frequencies is 
used instead of original term frequency in specified document. We hypothesize that 
this method could also be applied to element retrieval. Our basic view is that an ele-
ment is to be treated like a document, except that it may inherit information from 
other elements in the document. Thus each element has (in addition to its own text, 
which is treated as one field) extra fields consisting of text inherited from other ele-
ments. The details of our idea are as follows: 

Suppose we have nE elements e = 1, . . . , nE in given collection C. Term j has fre-
quency jetf ,  in element e. eel  is the element length and avel is the average element 

length. Then we simply extend BM25 to element retrieval as follows: 

 
Accordingly, Function BM25E would be, 

 

where jetf ,
'  denotes the weighted term frequency of jth term in e, eel '  is the 

weighted element length, 'avel  is the weighted average element length across the 

collection, 1
'k  is the weighted free parameter. Similar to those parameters in section 

2.1, given an element weights Wf to element )( eff ∈  which contributes to a given 

element e’s score, 
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where M is the total number of element in collection C.   
Equation (5) says that if we have some fields (elements) which are to contribute to 

the score of the element for retrieval, then we should include them by means of a 
linear combination of term frequencies, weighted by a set of field weights, following 
the method devised for BM25F. Theoretically, f could be any element in collection C. 
In fact, if all elements in a document d contribute to a given element in this document, 
then we come back to BM25F (3). If all Wf equal 1, then the weighting function is 
equivalent to BM25 (1).  

What we need to say is that this statement does not in any way define the imple-
mentation, but merely the principle of how elements are to be treated. Detail imple-
mentation of our experiment is further discussed in section 3. 

3   Experiment of BM25E on INEX 2005 

In this section, the INEX collection and its structure will be introduced. We will then 
describe the assumptions we used for our experiments. Finally, our experiment envi-
ronment and procedures are introduced. 

3.1   Data Sets 

There are two datasets have been used for our experiment: INEX 1.4 and INEX 1.7. 
Both of these two collections are from IEEE Computer Society publications. 

Inex 1.4: This data set is the INEX collection for 2004 which contains 12107 arti 
                     cles of IEEE Computer Society publications from 1995 to 2002.  

Inex 1.6: This data set is the INEX collection for 2005 which contains 16819 arti 
                     cles of IEEE Computer Society publications from 1995 to 2004.  

More details of these collections can be found in table 1. 

Table 1. Figures of INEX collections 

Data sets INEX 1.4 INEX 1.6 
Size of Data(MB) 494 705 
# of elements 8,239,873 11,411,135 
# of attributes 2,204,688 4,669,699 
# of Articles 12,107 16,819 
Avg. Path Level 8 8 

3.2   Data Structures 

The tags shown in Table 2 are the tags used in the INEX collections, which seem to 
be appropriate for retrieval. Many different tags are used in the documents, but some 
of them are clearly presentational in nature rather than structural, and often also in-
clude very small segments of text. 
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Table 2. INEX selected tags and its meaning 

Content Name Tags 
article title atl 
article abstract abs 
body text bdy 
section sec, ss1, ss2, ss3  
section title st 
paragraph ilrj, ip1, ip2, ip3, ip4, ip5, item-none, p, p1, p2, p3  
bibliography bib 
appendix bm 

As discussed in [11], Wf, needs to be tuned for each selected field which contrib-
utes to the document’s weight in BM25F. The same method should also be used for 
BM25E. Although in theory, every context element would contribute to given element 
e, in practice, there are more than about ten-million elements in each INEX collection 
and it is very difficult to tune every element’s Wf. The problem then lies in what ele-
ments should be chosen for optimisation.  

Robertson et al [11] chose title as the tuned field. In this experiment, considering 
the data structures of INEX, we choose atl, abs and st as the tuned elements. We 
believe that title and abstract in some extent reflect the content of an article, and sec-
tion title in some extent tells us the section and its sub-elements’ content. We believe 
these elements could contribute to the weight of relevant elements.  This issue will be 
discussed in more detail in section 3.3. 

3.3   Some Assumptions for BM25E on INEX 2005 

Due to the costs of implementation and some other factors such as time limitations, 
we declare our assumptions for the experiments on the elements which should be 
inherited for other retrievable ones and the ways to compute 'avel  and 1

'k . They are as 
follows: 

Assumption 1: elements in one document do not have an effect on elements in other 
documents. Elements except atl, abs and st also don't have an effect on other ele-
ments which are not their ancestors in the same document. 
Assumption 2: Elements atl and abs contribute to the weight of elements bdy, bm 
and their child elements. Elements st contributes to the weight of the section it be-
longs to, and also of the section’s child elements and article element. All st elements 
have the same Wf without considering the level they belong to. 
Assumption 3: Due to the complexity of computing 'avel  and 1

'k , we substitute the 
article level values 'avdl  and 1

'k .  

Assumption 1 is simple and easy to understand. In Assumption 2, the question may lie 
in that what role element st plays in the relevant section’s other parent elements ex-
cept article element. Assumption 3 is based on a guess that this replacement of  
parameters would not have too great an effect on the results.  These issues will be 
tackled in further research. 
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3.4   Experiment Environment and Procedures 

This is the first year for the CISR to take part in INEX. We largely conduct our work 
on Okapi in a Linux environment (using Red Hat 9). Okapi was designed as a tradi-
tional document retrieval system, and not to deal with XML data.  We have therefore 
done significant development work for both XML indexing and element level XML 
retrieval in order to participate in INEX.  

Our experimental procedure is as follows: firstly, we tune Wf for selected elements 
atl, abs and st; secondly, we use Okapi’s Basic Search System (BSS) to get a docu-
ment result set; and finally we use a newly designed XML element weighting and 
displaying interface to get our final submissions required by INEX, among which, 
selected Wf parameters are used to get optimized runs. We should also state that only 
article, abs, bdy, bm, section and paragraph elements are considered as potential 
relevant elements for our final runs in our experiment. This may lose some relevant 
elements, but some small irrelevant elements are filtered at the same time. In the next 
section, we report our evaluation result for INEX 05. 

4   Evaluation 

In order to examine the new data structures and algorithms building for our INEX 
experiments, we used INEX 04 ad-hoc topics and assessment to tune Wf for atl, abs 
and st on document level by using the average precision score (we did not evaluate 
using the INEX methodology at the element level). All the text of the element that is 
not included in {atl, abs, st} is given a fixed weight of 1. Our method shows that 
tuning Wf for these selected elements contributes to an improvement in retrieval per-
formance on the INEX 04 collection. Trotman et al [21] used a genetic algorithm to 
learn parameter values for structural elements, with a range of 0 to 1. We however use 
a combinatorial method on a given set of parameters using a range of 1 to 3000. The 
tuning values for Wf are all integers in our experiment. We first tuned Wf {atl, abs, st} 
from {1, 1, 1} to {10, 10, 10} using increments of 1. Result shows that the values of 
{10, 3, 10} for Wf get the highest average precision score. The best tuning results 
were obtained when the tuning values for atl and st are both 10 and tuning values for 
abs are all between 3 to 6, we therefore investigated the tuning scope for atl and st. 
We then tried to tune Wf {atl, abs, st} from {1, 1, 1} to {50, 10, 50} in increments  
of 1. The results shows that a higher value for atl yielded better results, the best scope 
for st is from 12 to 25, while the best scope for abs was about the same for the first 
set of tuning experiments conducted. We conducted some further tuning experiments 
with a larger scope for atl and the ranges for abs and st set to between 1~10 and 
10~30 respectively. In these experiments we tuned atl from 1 to 300 using increments 
of 10 and then used increments of 50 for atl, to a maximum value of 3000. We be-
lieved that there was no point in investigating larger values. The best average preci-
sion score was recorded when the tuned value for atl is around 2400. Finally, we 
tuned atl from 2100 to 2700 in increments of 1 in order to obtain the best optimized 
results. Our experiment shows when using the values of 2356, 4 and 22 for Wf in 
elements atl, abs and st respectively we obtained the highest performance for article 
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Table 3. Tuned results for INEX 04 on document level 

Wf {atl, abs, st} Avg precision 
2356, 4, 22 0.143698 
2416, 5, 22 0.143678 
2668, 5, 25 0.143435 
10, 4, 9 0.129819 
1, 1, 1 0.124023 

level retrieval on INEX 04 data. We are a little surprised that the best-tuned value for 
atl is so high. The implication is that the selected elements, particularly atl and st 
contributed much to the document level XML retrieval in the INEX collection. See 
table 3 for some of our tuned result for INEX 04. 

Due to the time and resource limitations, we only submitted runs for CO.Thorough 
and CO.FetchBrowse. Based on these tuning experiments and considering the differ-
ence between document level retrieval and element level retrieval, and also being 
concerned that tuned Wf values for atl and st would be too high, we choose 3 sets of 
tuning constants of values for Wf {atl, abs, st}, namely {2356, 4, 22}, {1000, 4, 22} 
and {15, 4, 8} , for submitting CO.Thorough runs; and chose another 3 sets of tuning 
constants of values for Wf {atl, abs, st}, namely {1000, 4, 22}, {300, 4, 18} and  
{98, 4, 13}, for submitting CO.FetchBrowse runs.  

Though we tuned Wf in document level, we are still pleased to see that our official 
runs for CO.Thorough rank at the top of the total 55 official runs, especially for “Met-
ric: nxCG(25), Quantization: strict, Overlap=off”, our 3 runs ranks 1st, 2nd and 36th 
respectively; for “Metric: nxCG(50), Quantization: strict, Overlap=off”, our 3 runs 
ranks 1st, 2nd and 16th respectively; and for “Metric: ep-gr, Quantization: 
strict,Overlap=off”, our 3 runs ranks 7th, 12th and 27th respectively. Fig. 1 and Fig. 2 
show our official result for strict CO.Thorough metrics. We also tried to use metric 
nxCG to compare our 3 official runs for CO.Thorough with the non field-weighted 
run whose Wf{ atl, abs, st } is {0, 0, 0}(As we’ve mentioned above, all the text of the 
element that is not included in {atl,abs,st} is given a fixed weight of 1. The values 
{0,0,0} here just mean these 3 chosen fields have no effect on other elements except 
their ancestors and themselves. For their ancestors and themselves, non weighted tf 
are still considered). Result shows that the non field-weighted run ranks last while the 
former two runs rank top. 

The experiment shows that the first two sets of tuning constants, Wf {1000, 4, 22} 
and Wf {2356, 4, 22}, ranks better than the third groups Wf (15, 4, 8). The evidence is 
that atl and st does contribute to retrieval performance and it also implies that com-
bining field-weighted term frequencies of selected elements is a beneficial method. 
Tuning constant set Wf {1000, 4, 22} rank first for Metric “nxCG(25 and 50), Quanti-
zation: strict,   Overlap=off” also suggests that it may be better if Wf is tuned on ele-
ment level. This behavior may also be caused by the difference of the topics and data 
sets between INEX 2004 and INEX 2005. It is worth doing a further set of tuning 
experiments on the INEX 2005 topics and data sets. 
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Fig. 1. Metric nxCG, Quantization: strict,Overlap=off 
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Fig. 2. Metric ep-gr, Quantization: strict,Overlap=off  

Results also show that our method performs better for models which consider only 
fully specific and highly exhaustive components than those models which considering 
varying levels of relevant components. The reason may be because the selection of 
elements we chose to submit for our experiments. We intend to investigate this issue 
further. 

5   Conclusion 

We extend document level field-weighted retrieval function BM25F to element level 
retrieval function BM25E. We have applied this method to INEX 2005 CO XML 
retrieval and results show that our method is beneficial. 
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However there are still some limitations in our element level retrieval function. 

Firstly, values for 'avdl  and 1
'k are used at the article level, not element level. The 

creation of a practical algorithm to generate values for tuning parameters at the ele-
ment level is a challenging task. Secondly, parameter tuning is undertaken at docu-
ment level by using average precision method, not on element level by using INEX 
official metrics. It should be noted that the element st has the same weight at different 
levels, and further experiments need to be undertaken to investigate this problem. 
Thirdly, we only submit runs for CO.Thorough and CO.FetchBrowse tasks, so more 
tasks need to be done to test our method. And also our system for XML element re-
trieval needs to be upgraded. We will investigate these problems in further research.  
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Abstract. This paper describes the retrieval approach proposed by the SIG/EVI 
group of the IRIT research centre at INEX’2005. This XML approach is based 
on direct contribution of the components constituting an information need. This 
paper focuses on the method evolutions since previous participation to INEX. It 
describes the official experiments done for each subtasks with the correspond-
ing results and additional unofficial experiments. 

1   Introduction 

Due to the growing use of XML (eXtensible Markup Language) to describe docu-
ments, a growing number of systems intend to provide solutions to retrieve relevant 
components among XML documents. These systems are mostly evolutions of either 
database systems [3] or Information Retrieval (IR) systems. Among IR-based systems 
two main categories of proposals can be distinguished: systems based on a probabilis-
tic model [7][12] and systems based on the vector space model [2][5]. XML retrieval 
needs to take into account both content and structural aspects. 

In this context of various proposals, a framework such as INEX is useful. On one 
hand, it offers testbeds and evaluation methods that allow comparing different sys-
tems according to common criteria. On the other hand, it allows participants to try to 
estimate a global effectiveness of their system and to determine the contexts adapted 
to their system. 

Among the systems that participated to INEX previous year and that obtained 
globally good results there are approaches based on the vector space model [8] or 
close principles [4][6], probabilistic methods [1][13][10][11] and database systems 
[9]. [8] presents an approach based on the vector space model using multiple indexes, 
using a document ranking method with document pivot normalization and including a 
possible automatic query refinement. [4] proposes an approach using inverted lists for 
terms stored in a database and based on different scoring formulas for leaf elements 
and branch elements. Our method [6] is based on direct contribution of query compo-
nents. The main principles of the method are recalled in this paper. This method ob-
tained better results for CAS (Content and Structure) topics. [1] experimented a 
method based on the Okapi BM25 measure only on the CO (Content Only) topics. 
[11] uses a multinomial language model with smoothing and associated to documents 
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indexes at different levels (article, element). [10] proposes a hierarchical language 
model to represent XML documents as trees and where a model is estimated for each 
XML component using linear interpolation of the component content, its children’s 
models and its parent model. The approach proposed in [13] represents hierarchies of 
documents as bayesian networks and computes recursively scores from network root 
to leaves. [9] describes an extended version of the TIJAH system that follows a three-
level database architecture and that has been extended to handle phrase modelling and 
to support structural relevance feedback. 

In this paper, we present an IR method using principles close to approaches based 
on the vector space model. However, this approach is based on direct contribution of 
each component of the query and particularly on the presence of each term constitut-
ing the query. The paper focuses on the method evolutions done since the previous 
participation to INEX last year. 

In the remainder of this paper a short presentation of the main ideas on which relies 
the retrieval method is done in Section 2. Section 3 presents how contributions of 
query components are mapped into scoring principles. Section 4 details the submitted 
runs and the obtained results. Finally, an analysis of the experiments and an introduc-
tion of future works that ensue from it are given in Section 5. 

2   Participation Objectives 

Participating to INEX this year has multiple objectives: 
- a first interest was to evaluate the benefit of evolutions brought to the method 

since last participation. Evolutions intervene in the definition of the function 
computing the score of an XML element and the score propagation principle 
through the hierarchical structure of a document, 

- in addition, different new subtasks corresponding to different retrieval strate-
gies that could interest a user have been defined in INEX 2005. The experi-
ments carried out in this context can help us to determine the strategies for 
which our method seems to be a possible response, 

- finally, it was interesting to estimate the influence of changes introduced in the 
INEX 2005 framework regarding metrics and the assessment process. 

3   Method Principles 

The IR method described in this paper is based on principles close to approaches 
based on the vector space model. Document and query representations are comparable 
to vectors. However, the correspondence between documents and query is not esti-
mated using a “classical” similarity measure. The method presented is based on direct 
contribution of each query term appearing in an XML element. The contribution can 
be modulated according to other components of the query such as structural con-
straints. A principle of score propagation completes the method with regard to the 
hierarchical structure of XML documents. 
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3.1   Representation of INEX Elements 

From the document point of view, documents are represented as sets of n-tuples 
(XPath, term, occ) where XPath is the location of the node containing the term from 
the root of an XML document and occ is the number of occurrences of the term in the 
textual content of the node. For each XML component, concepts are extracted auto-
matically. Concept extraction involves notably stop word removal and optionally 
other processes such as stemming using for example the Porter’s algorithm. For INEX 
2005 experiments all XML tags have been taken into account. 

Example of index representation of documents: 

… 
an/1995/a1006/article[1]/bdy[1]/sec[2]/ss1[6]/p[3] call 1 
an/1995/a1006/article[1]/bdy[1]/sec[3]/p[8] conference 1 
an/1995/a1006/article[1]/bdy[1]/sec[3]/p[8] papers 1 
an/1995/a1006/article[1]/bdy[1]/sec[4]/p[10] workshop 1 
an/1995/a1006/article[1]/bdy[1]/sec[4]/p[11] call 1 
… 

From the topic point of view, according to the INEX 2005 requirements, we used only 
the title part for CO topics and castitle part for CO+S and CAS topics. However our 
method can use the other parts constituting CO and CAS topics. For both topic types, 
stop words are removed and optionally terms can be stemmed. Topics are represented 
as pairs (target contraint, set of content indications). A content indication is a triplet 
(term, occurrences, preference, location constraint). Target constraints and location 
constraints can be restrictive XPaths for CAS and CO+S topics or wildcards (i.e. 
matching all elements) notably for CO topics. 

Example of index representation of topics: 

… 
papers 1 0 . 
workshop 1 0 . 
conference 1 0 . 
… 

3.2   Scoring Function 

The scoring function is defined as a combination of three values. The scoring function 
can be globally defined as follows: 

),(),(),(),( ETpTtgEtfETScore
Tt

⋅⋅=
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where 

T is the topic 

t is a term representing the topic T 

E is an XML element 

),( Etf  This factor measures the importance of the term t in 
the XML element E. 

),( Etg  This factor measures the importance of the term t in 
the topic representation T. 

),( ETp  This factor measures the global presence of the topic 
T in the XML element E. 

 
On one hand, the function is defined as an addition of contributions of the concepts 

constituting a query. This principle allows giving relevance to elements dealing about 
either only one concept or several concepts. The addition tends to promote elements 
containing several concepts. However, depending on the different chosen functions an 
element dealing strongly about one concept can be evaluated higher than an element 
dealing lightly about many concepts. 

On the other hand, the function estimates globally the relevancy of an element ac-
cording to a query. 

The function f that measures the importance of a term in an XML element is based 
on the number of occurrences of the term in the element or on the relative presence of 
the term regarding all the occurrences of query terms appearing in the element. This 
function can be defined as follows: 

α),(

),(
),(

ETOcc

EtOcc
Etf =  

where  

t is a term representing the topic T 

E is an XML element 

α∈(0,1) 

),( EtOcc  Number of occurrences of the term t in the element E. 

),( ETOcc  Total number of occurrences of all the query terms in 
the element E 

 
The function g that measures the importance of a term in a topic representation is 

based on the frequency of the term in the topic. The frequency can be moderated by 
the number of XML elements containing the term. The function can also use the rank 
of the term according to the number of elements containing this term and regarding 
the numbers of elements containing the other query terms. 
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This function is defined as follows: 

)(

)(

)(

),(
),(

2

tNbElts

tIndRnk

TSize

TtOcc
Ttg ⋅=  

where 

),( TtOcc  Number of occurrences of the term t in the topic T. 

Size(T) Size of the topic T i.e. total of occurrences of all the 
terms representing T. 

NbElts(t) Number of elements containing the term t 

IndRnk(t) Rank of the term t according to the number of elements 
containing each term of the topic. 

 
This function increases the contributions of terms appearing in few XML elements 
through the factor NbElts(t) and IndRnk(t). 

The function p that measures the global presence of a topic in an XML element is 
based on the number of terms describing the topic and that appear in the element. 
This function is defined as follows: 

)
)(

),(
(

),( TNbT

ETNbT

ETp ϕ=  

where 

T is the topic 

E is an XML element 

ϕ is a real, ϕ ≥ 0.0 

NbT(T,E) Number of terms describing the topic T and that 
appear in the XML element E. 

NbT(T) Number of terms describing the topic T. 
 

When ϕ is set to 1.0 the function p has no effect on the final score. The value of ϕ 
determines the influence of the function g on the final score. The influence increases 
with the value of ϕ. Using a function power intends to clearly distinguish the elements 
containing a lot of terms describing the topic and the elements containing few terms 
of the topic. 

Additional notions complete the scoring function: the notion of coverage and pre-
fix coefficients. The coverage is a threshold corresponding to the percentage mini-
mum of topic terms that have to appear in an element to select it. It aims at ensure that 
only documents in which the topic is represented enough will be selected for this 
topic. Prefix coefficients intend to increase or reduce term contributions according to 
sign ‘+’ and ‘-‘ associated to terms in the query. These notions and their integration in 
the scoring function are detailed in [6]. 
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3.3   Score Propagation According to XML Structure 

The hierarchical structure of XML has to be taken into account. The hypothesis on 
which is based our method is that an element containing a component selected as 
relevant is also relevant. Our approach takes into account this hypothesis propagating 
the score of an element to the elements it composes. The score propagated to the 
composed elements is decreased applying a reducing factor. The propagation princi-
ple is the following: 

),()
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),(
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1),(
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a
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⋅⋅−+=

<⋅∀

λ
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where 

 is a constant coefficient real ≥0.0 and E, Ea, ER are XML elements 

d(Ea,E) is the distance between Ea and E in the XPath associated to E (e.g. in 
the XPath /article/bdy/s/ss1/p the distance between p and bdy is equal to 3 i.e. 
d(bdy,p)=3) 

d(ER,E) is the distance between the root ER and E in the XPath associated to E 

This process tends to consider an element having a relevant descendant less rele-
vant than its descendant element. However, an ancestor having several relevant de-
scendants can obtain a score greater than one of its descendants. Using the above 
function, the score propagated to near ascendants is slightly reduced while it is more 
strongly reduced for the distant ascendants. The coefficient  allows varying the score 
contribution of an element in its ancestors. When =0.0 the score of an element is 
totally propagated towards its ancestors. 

The following figure illustrates the score propagation principle with =0.5: 
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Fig. 1. Score propagation principle 

3.4   Structural Constraints 

Two types of structural constraints can be used to define to INEX CAS topics: 
- constraints on content that is to say XPath of elements which are expected to 

contain searched concepts (e.g. about(.//p,'+XML +"information retrieval"), 
- constraints on the granularity of elements expected as result (e.g //article[….]). 
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Structural constraints on content are taken into account adding a coefficient vary-
ing the contribution given by a query term. If the XML element does not verify the 
constraint associated to the term, the contribution given by the term is reduced. The 
coefficient intervenes in the function f that measures the importance of a term in an 
XML element (cf section 3.2) as follows: 

αβ
),(

),(
),(

ETOcc

EtOcc
Etf ⋅=  

where 

if E does not verify the structural constraint defined on t then  0.0<β<1.0 

 else   β=1.0 
 
This principle constitutes a first solution. However, only XML elements with tex-

tual content that verify the constraints on content are affected and by propagation the 
elements containing them. This could be a limitation to fully respond to CAS tasks 
with strict verification of content constraints notably the task SSCAS. This principle 
should be extended to take into account XML elements without textual content and 
that verify the constraints on content but composed of components containing query 
terms and not verifying the associated constraints. 

In addition, structural constraints on the granularity of elements expected as result 
are handled adding a coefficient varying the global score computed for an XML ele-
ment according to content. If the XML element does not verify the constraint on result 
granularity associated to the query, the score computed is reduced. The coefficient 
intervenes in the scoring function as follows: 

),(),(),(),( ETpTtgEtfETScore
Tt

⋅⋅⋅=
∈∀

γ  

where 

 if E does not verify the structural constraint defined on T then  0.0 γ<1.0
    else   γ=1.0 

This solution allows attaching variable importance to structural constraints on result 
granularity. When γ=0.0 the structural constraints on result are strictly taken into 
account. 

4   Experiments 

At least one run based on our XML retrieval method was submitted to INEX 2005 for 
each subtask. For the subtasks, CO.Thorough, CO.FetchBrowse, COS.Focussed two 
runs were submitted. 

 



 XML Retrieval Based on Direct Contribution of Query Components 179 

Our experiments aim at evaluating the effectiveness of the evolution given to the 
scoring function, the adaptation of the method regarding the different tasks (Thor-
ough, Focussed, Fetch and Browse, SSCAS, VVCAS, …), the new metrics and the 
evolution of assessment process. 

4.1   Experiment Setup 

One run for all the subtasks except the subtasks Focussed uses the following scoring 
function: 

)
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EtOccETScore ⋅⋅⋅=

∈∀
 

The runs based on this function are named using the following principle: 
V2005T<subtask_name> e.g. V2005TCO.Thorough. 

Additional runs for the subtasks CO.Thorough, CO.FetchBrowse and COS.Focus-
sed use a scoring function with a function f that measures the importance of a term in 
an XML element slightly different i.e.: 
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The runs based on this function are named using the following principle: 
V2005Tf<subtask_name> e.g. V2005TfCO.Thorough. 

For all submitted runs the parameters of the scoring method were the same. The 
coefficient used to propagate a component score through the hierarchical structure of 
the XML document was fixed to 0.1. The coverage threshold was fixed to 35% (i.e. 
more than a third of terms describing the topic must appear in the text to keep the 
XML component). The coefficients applied to take into account the signs ‘+’ and ‘-‘ 
were fixed to respectively +5.0 or -5.0 to increase or reduce 5 times the contribution 
of wanted respectively unwanted terms. 

The values of the parameters are those which gave the best results during a training 
phase done with INEX 2003 and INEX 2004 CO topics using the INEX 2004 official 
metrics. 

4.1.1   Subtasks Focussed 
The runs submitted for the subtasks Focussed use scoring functions without function 
p effect (ϕ=1.0) i.e. without factor measuring the global presence of the topic in the 
XML element, as follows: 

),(),(),( TtgEtfETScore
Tt

⋅=
∈∀

 

No propagation of score is done to have result without overlapping as requested for 
the subtask Focussed. 



180 G. Hubert 

4.1.2   Subtasks CO+S and CAS 
For all the subtasks CO+S and CAS the castitle part of topic definition has been used 
to define queries. 

The coefficient taking into account structural constraints on content was fixed to 
0.5 (i.e. the contribution of a query term is divided by 2 when the element does not 
verify the structural constraint associated to the term) for all the subtasks. Since the 
actual solution implemented in our method cannot fully take into account the struc-
tural constraints, we decided to handle them as vague even for XSCAS subtasks. 

The coefficient taking into account structural constraints on result granularity was 
fixed to: 

− 0.5 (i.e. the scores of elements not verifying the structural predicates are di-
vided by 2) when expecting vague verification of the constraints i.e. VVCAS 
and VSCAS, 

− 0.0 (i.e. the scores of elements not verifying the structural predicates are reset 
to zero) when expecting strict verification of the constraints i.e. SSCAS and 
SVCAS, 

The value 0.5 of the two coefficients was fixed arbitrarily. 

4.2   Official Results 

Results of the runs for CO subtasks are detailed in the following tables. Only the 
results of the run that obtained the best results for each subtask are presented. 

Table 1. Best results for the CO subtask Focussed 

 Run V2005TCO.Focussed 

 Quantisation strict generalised generalisedLifted 

 overlap=on precision rank precision rank precision rank 

nxCG@10 0.1266 5/44 0.1848 19/44 0.2217 17/44 

nxCG@25 0.0997 8/44 0.1735 17/44 0.1991 15/44 

nxCG@50 0.1176 9/44 0.1566 21/44 0.1761 18/44 M
et

ric
 

ep/gr (MAP) 0.0332 10/44 0.0477 24/44 0.0650 20/44 

Table 2. Best results for the CO subtask Thorough 

 Run V2005TCO.Thorough 

 Quantisation strict generalised generalisedLifted 

 overlap=off precision rank precision rank precision rank 

nxCG@10 0.0231 35/55 0.1927 30/55 0.2044 34/55 

nxCG@25 0.0606 24/55 0.206 24/55 0.2124 32/55 

nxCG@50 0.1298 3/55 0.1893 29/55 0.1887 35/55 M
et

ric
 

ep/gr (MAP) 0.0129 31/55 0.0490 29/55 0.0244 31/55 
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Table 3. Best results for the CO subtask Fetch and Browse 

 Run V2005TfCO.FetchBrowse 

 Quantisation strict generalised generalisedLifted 

overlap=on MAP rank MAP rank MAP rank 

ep/gr {element} 0.0077 22/40 0.0724 16/40 0.0632 18/40 

ep/gr {article} 0.1298 27/42 0.0900 28/42 0.1044 28/42 

overlap=off MAP rank MAP rank MAP rank 

ep/gr {element} 0.0139 12/40 0.0541 11/40 0.0362 11/40 

M
et

ric
 

ep/gr {article} 0.1317 28/42 0.1295 29/42 0.1351 28/42 

Table 4. Best results for the CO+S subtask Focussed 

 Run V2005TfCOS.Focussed 

 Quantisation strict generalised generalisedLifted 

 overlap=on precision rank precision rank precision rank 

nxCG@10 0.0378 13/27 0.1087 21/27 0.1275 19/27 

nxCG@25 0.0562 11/27 0.1174 19/27 0.1323 18/27 

nxCG@50 0.0521 14/27 0.1204 18/27 0.1313 15/27 M
et

ric
 

ep/gr (MAP) 0.0145 11/27 0.0516 16/27 0.0635 15/27 

Table 5. Best results for the CO+S subtask Thorough 

 Run V2005TCOS.Thorough 

 Quantisation strict generalised generalisedLifted 

 overlap=off precision rank precision rank precision rank 

nxCG@10 0.0059 24/33 0.1997 23/33 0.2024 23/33 

nxCG@25 0.0089 25/33 0.1492 23/33 0.1538 23/33 

nxCG@50 0.0083 28/33 0.1294 22/33 0.1313 22/33 M
et

ric
 

ep/gr (MAP) 0.0049 23/33 0.0417 17/33 0.0271 19/33 

Table 6. Best results for the CO+S subtask Fetch and Browse 

 Run V2005TCOS.FetchBrowse 

 Quantisation strict generalised generalisedLifted 

overlap=on MAP rank MAP rank MAP rank 

ep/gr {element} 0.0034 12/25 0.0472 16/25 0.04342 15/25 

ep/gr {article} 0.1364 14/25 0.1068 15/25 0.1194 15/25 

overlap=off MAP rank MAP rank MAP rank 

ep/gr {element} 0.0081 9/25 0.0401 9/25 0.0292 9/25 

M
et

ric
 

ep/gr {article} 0.1364 14/25 0.1265 15/25 0.1305 15/25 
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Our method seems to be globally more efficient for the subtasks Focussed than for 
the subtasks Thorough notably for strict quantisation. For the CO.Focussed subtask, 
nxCG metric and strict quantisation, the results are better for ranking up to 100. For 
the Thorough subtasks the results are on average slightly better for generalised quan-
tisation than for strict quantisation. 

For the Fetch and Browse subtasks results show better effectiveness at the element 
level than at the article level. Results are slightly better for generalised quantisations 
than for strict quantisation except for CO+S topics. 

The difference of effectiveness regarding quantisations (strict vs generalised) be-
tween FetchBrowse and Thorough subtasks on one hand and Focussed subtasks on 
the other hand can be related to the use of a different configuration of the method for 
Focussed subtasks. 

For CAS topics, results of the runs are detailed in the following tables: 

Table 7. Results for the CAS subtask SSCAS 

 Run V2005TSSCAS 

 Quantisation strict generalised generalisedLifted 

 overlap=off precision rank precision rank precision rank 

nxCG@10 0.1250 11/25 0.3643 4/25 0.3719 4/25 

nxCG@25 0.1500 13/25 0.4816 1/25 0.4936 1/25 

nxCG@50 0.4078 2/25 0.5192 1/25 0.5233 1/25 M
et

ric
 

ep/gr (MAP) 0.0504 18/25 0.1219 13/25 0.1013 14/25 

Table 8. Results for the CAS subtask SVCAS 

 Run V2005TSVCAS 

 Quantisation strict generalised generalisedLifted 

 overlap=off precision rank precision rank precision rank 

nxCG@10 0.1800 4/23 0.3240 2/23 0.3259 2/23 

nxCG@25 0.2400 7/23 0.3357 3/23 0.3420 1/23 

nxCG@50 0.4422 3/23 0.3799 1/23 0.3788 1/23 M
et

ric
 

ep/gr (MAP) 0.0938 4/23 0.1233 3/23 0.1107 4/23 

Table 9. Results for the CAS subtask VSCAS 

 Run V2005TVSCAS 

 Quantisation strict generalised generalisedLifted 

 overlap=off precision rank precision rank precision rank 

nxCG@10 0.0333 17/23 0.2427 9/23 0.2460 10/23 

nxCG@25 0.0600 12/23 0.2435 9/23 0.2440 10/23 

nxCG@50 0.0567 13/23 0.2436 9/23 0.2392 10/23 M
et

ric
 

ep/gr (MAP) 0.0287 12/23 0.0908 5/23 0.0191 12/23 
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Table 10. Results for the CAS subtask VVCAS 

 Run V2005TVVCAS 

 Quantisation strict generalised generalisedLifted 

 overlap=off precision rank precision rank precision rank 

nxCG@10 0.1000 12/28 0.2480 14/28 0.2500 16/23 

nxCG@25 0.1267 11/28 0.2544 9/28 0.2581 14/23 

nxCG@50 0.1162 10/28 0.2373 9/28 0.2408 13/23 M
et

ric
 

ep/gr (MAP) 0.0379 10/28 0.0804 7/28 0.0176 15/23 

The results for CAS subtasks are globally good particularly for generalised quanti-
sation. Considering that CAS runs are based on the same scoring function than  
Thorough and FetchBrowse runs for CO topics it is not surprising to have the same 
behaviour regarding the quantisations (i.e. better for generalised quantisation). The 
results are globally better for subtask not verifying strictly structural constraints on 
content (i.e. SVCAS and VVCAS). This can be related to the fact that our method 
cannot fully handle constraints on content at the moment. 

4.3   Additional Results 

Our official experiments were not performed on the last version of the INEX collec-
tion. This could have penalised our official evaluations. To verify this possibility, new 
unofficial experiments have been done using the last version of the collection with the 
 

Table 11. Results of additional run for the CO subtask Focussed 

 Run unofficialV2005TCO.Focussed 

 Quantisation strict generalised generalisedLifted 

overlap=on precision rank precision rank precision rank 

nxCG@10 0.1115 (-12%)   7/44 (-2) 0.1791 (+3%) 19/44 (.) 0.2253 (+2%) 17/44 (.)

nxCG@25 0.1136 (+14%)   6/44 (+2) 0.1838 (+6%) 15/44 (+2) 0.2200 (+10%) 10/44 (+5)

nxCG@50 0.1136 (-3%) 12/44 (-3) 0.1702 (+9%) 16/44 (+5) 0.1982 (+13%) 11/44 (+7)M
et

ric
 

ep/gr (MAP) 0.0399 (+20%)   9/44 (+1) 0.0616 (+29%) 20/44 (+4) 0.0841 (+29%) 13/44 (+7)
 

Table 12. Results of additional run for the CO subtask Thorough 

 Run unofficialV2005TCO.Thorough 

 Quantisation strict generalised generalisedLifted 

overlap=on precision rank precision rank precision rank 

nxCG@10 0.0346 (+50%) 25/55 (-2) 0.2064 (+7%) 26/55 (+4) 0.2196 (+6%) 28/55 (+6)

nxCG@25 0.0425 (-30%) 29/55 (+2) 0.1980 (-4%) 27/55 (-3) 0.2092 (-2%) 36/55 (-4)

nxCG@50 0.1391 (+7%)   3/55 (-3) 0.1889 (-0%) 29/55 (.) 0.1893 (-0%) 35/55 (.)M
et

ric
 

ep/gr (MAP) 0.0168 (+30%) 28/55 (+1) 0.0566 (+16%) 24/55 (+5) 0.0288 (+18%) 28/55 (+3)  
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Table 13. Results of additional run for the CAS subtask SSCAS 

 Run unofficialV2005TSSCAS 

 Quantisation strict generalised generalisedLifted 

overlap=on precision rank precision rank precision rank 

nxCG@10 0.1500 (+20%)  9/25 (+2) 0.3942 (+8%)   4/28 (+7) 0.4157 (+12%)   3/25 (+1)

nxCG@25 0.1778 (+19%) 11/25 (+2) 0.4821 (+0%)   1/28 (+3) 0.4936 (+0%)   1/25 (.)

nxCG@50 0.2056 (-50%) 11/25 (-9) 0.5152 (-1%)   1/28 (+2) 0.5269 (+1%)   1/25 (.)M
et

ric
 

ep/gr (MAP) 0.0648 (+29%) 14/25 (+4) 0.1289 (+5%) 12/28 (+2) 0.1096 (+8%) 14/25 (.)
 

Table 14. Results of additional run for the CAS subtask VSCAS 

 Run unofficialV2005TVSCAS 

 Quantisation strict generalised generalisedLifted 

overlap=on precision rank precision rank precision rank 

nxCG@10 0.1000 (+200%)  7/23 (+5) 0.2862 (+18%) 7/23 (+2) 0.3046 (+24%)  8/23 (+2)

nxCG@25 0.0600 (+0%) 12/23 (.) 0.2712 (+11%) 6/23 (+3) 0.2803 (+15%)  8/23 (+2)

nxCG@50 0.0700 (+23%) 13/23 (+1) 0.2730 (+12%) 4/23 (+5) 0.2689 (+12%)  6/23 (+4)M
et

ric
 

ep/gr (MAP) 0.0386 (+34%)   7/23 (+7) 0.1057 (+16%) 5/23 (.) 0.0247 (+29%)  8/23 (+4)  

Table 15. Results of additional run for the CAS subtask VVCAS 

 Run unofficialV2005TVVCAS 

 Quantisation strict generalised generalisedLifted 

overlap=on precision rank precision rank precision rank 

nxCG@10 0.1444 (+44%)  7/28 (+5) 0.2921 (+18%) 7/28 (+7) 0.3047 (+22%) 11/28 (+5)

nxCG@25 0.1267 (+0%) 11/28 (.) 0.2751 (+8%) 6/28 (+3) 0.2820 (+9%)   6/28 (+8)

nxCG@50 0.1228 (+6%)   9/28 (+1) 0.2587 (+9%) 7/28 (+2) 0.2651 (+10%)   8/28 (+5)M
et

ric
 

ep/gr (MAP) 0.0597 (+58%)   3/28 (+7) 0.0962 (+20%) 5/28 (+2) 0.0230 (+31%) 12/28 (+3)  

same configurations of the method used for our official runs. These experiments have 
shown improvements of the results notably regarding the metric ep/gr. 

For example, the following tables show modified results for the new unofficial re-
sults (and the difference with the corresponding official results) with the best im-
provements for CO subtasks and for CAS subtasks: 

5   Discussion and Future Works 

A first analysis of the experiments performed and the obtained results shows that: 

− the chosen functions and parameters for the scoring method seem to be glob-
ally adapted to the actual INEX framework. However, the results obtained 
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for the subtasks Thorough show that our method handle overlap not well 
enough to fully respond to this kind of search. A future work will consist in 
evolving the method to integrate overlap handling according to different 
strategies. 

− the solutions used to extend our method to handle structural constraints seem 
to be adequate. However, structural constraints on content are not fully han-
dled by our method at present. To complete the method to handle structural 
constraints completely is another next step. 

− other experiments have to be done to determine the method configurations 
adapted to each subtask. Furthermore, analyses must be carried out to deter-
mine queries processed well by our method and those leading to weaker re-
sults. This would enable to evolve the method to better respond to this last 
type of queries. 
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Abstract. While in previous INEX workshops, XML retrieval tasks were di-
vided roughly to CO (Content Only) and CAS (Content and Structure) tasks, the 
focus this year was to further refine those tasks so as to experiment with differ-
ent user behaviors for viewing returned results. In particular interest is the new 
“Focussed” task that permits a single element along each path, thus solving the 
problem of XML result overlapping that we experimented in previous INEX 
workshops. In this paper we describe an algorithm for the new “Focussed” task 
as well as our algorithms and approaches for the other tasks. 

1   Introduction 

The challenge in XML retrieval is to return the most relevant components that satisfy 
the query concepts. While in previous INEX workshops XML retrieval was divided 
roughly to CO (Content Only) task and CAS (Content and Structure) task, the focus 
this year was to further refine those tasks so as to measure different user behaviors.  

Specifically, the CO task was divided to three sub-tasks - CO.Thorough which 
aims at returning all relevant components, CO.Focussed which aims at returning a 
single element along any path and the CO.FetchBrowse which is targeted toward 
browsing model where the full document is browsed first and then its components. To 
test the importance of structure in queries, each CO query was reformulated with 
structural hints resulting in CO+S (Content Only plus Structure) topics. Similar to the 
CO task, three CO+S sub tasks were defined, namely – CO+S.Thorough, CO+S.Foc-
ussed and CO+S.FetchBrowse. Finally the CAS task was divided to four sub tasks 
checking combinations of Strict vs. Vagueness in target elements (elements to be 
returned) and in the rest of the query structure elements. 

The common challenge in all those ten sub tasks (three CO, three CO+S & four 
CAS) is the retrieval of the most “relevant” XML components that satisfy the user 
needs. The main problem is that classical IR ranking methods that consider term fre-
quency and document frequency statistics does not perform well at the component 
level due to component nesting in XML. 

In previous INEX workshops we described a component ranking algorithm [5,6] 
that solved the component nesting problem by running each query against different 
indices where each index contains elements of the same type. The algorithm per-
formed quite well in previous INEX workshops but its output had a high percentage 
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of overlapping elements. This is a viable solution for the CO.Thorough task but not 
for the CO.focussed task that requires a single element along each path.   

In this paper we describe an algorithm for the new “Focussed” task and we also 
show how we applied the component ranking algorithm to the various CO, CO+S and 
CAS tasks.  

The rest of the paper is organized as follows: In section 2 we brief the component 
ranking algorithm and show how it was used for the three CO runs. In section 3 we 
describe the CO+S runs and their results and we discuss our findings on the impor-
tance of structure in XML queries. Then in section 4 we describe our CAS approach 
and report results. We conclude in section 5 with summary and some conclusions. 

2   CO Runs 

The building block for all our CO runs was the component ranking algorithm [5,6]  
that we introduced in previous INEX workshops. The idea is to build different indices 
for the most informative component types where each index contains elements of the 
same type. The indices we used this year where {article, abs, bdy, sec, ss1, ss2 and 
p+ ip1}. 

The component ranking algorithm is described in Fig 1 below. Given a query Q, 
we run the query in parallel on each index (step 1) and then apply an Automatic 
Query Refinement (AQR) phase (step 2) on each result set. The AQR algorithm we 
used is a Lexical Affinity (LA) Refinement algorithm, which is fully described in  
[2, 6]. Then in step 3, the scores of elements in each result set are normalized to 
score(Q,Q) which as described in details in [6], normalizes scores from the different 
indices to the same range so that they can be compared. In step 4 we apply a docu-
ment pivot scaling where scores of elements from each index are scaled by the score 
of their parent article. Finally all the results sets are merged into a single result set of 
all element types. 

 

 

Fig. 1. Component ranking algorithm 

We submitted 3 runs for each CO sub task experimenting combinations of using 
phrases vs. ignoring phrases (i.e. treating their words as simple words) and using ‘+’ 
vs. ignoring ‘+’ on words. In general the submission that ignored phrases and ignored 
‘+’ outperformed other runs. We detail below our approach for each CO sub task. 

For each index i  

1. Compute the result set Ri of running Q on index i 

2. Apply AQR algorithm on Ri  

3. Normalize scores in Ri to [0,1] by normalizing to score(Q,Q) 

4. Scale each score by its containing article score from R0 

Merge all Ri's to a single result set R composed of all components sorted 
by their score 
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2.1   CO.Thorough 

This is the traditional CO task as was used in previous INEX workshops. We used the 
base component ranking algorithm as depicted in Fig 1. Our runs were ranked 1st in 
the ep/gr generalized metric and quite high in the various nxCG metrics. 

2.2   CO.Focussed 

A valid CO.Focussed run as defined in [4] should have only one element along any 
path namely no overlapping elements are allowed. To satisfy this requirement we first 
perform a regular CO.Thorough run and then filter out the overlaps. The filtering is 
done in two stages.  

In the first filtering stage we try to identify 'clusters' of highly ranked results in the 
XML tree and pick the most relevant element from each cluster. We refer to this stage 
as “smart filtering”. At the end of this stage some overlaps may still be left so we 
perform a second brute-force filtering stage to eliminate any such overlapping ele-
ments.  The two filtering stages are described below. 

Smart Filtering 
In the smart filtering stage we take the result set of the CO.Thorough run and group 
all elements by their containing article. For each such group we construct a result tree 
with nodes that correspond to the result components and edges that represent the an-
cestor-descendant relationship of the components in the original XML article. We 
keep for each node its assigned run score and the total number of its descendant in the 
original article.1  

To tolerate variations in result scores we smooth the scores by some ScoreThresh-
old parameter as follows: For each node N1 in the result tree and for each of its de-
scendant nodes N we define   

 
diffN1(N) = |score(N1)–score(N)| / score(N1) 

 
Using this diffN1 function we define for each node N1, three disjoint subsets, EQN1  
LTN1  and GTN1  on N1’s descendants as follows- 

 
• EQN1 = {N  /  diffN1(N)  ScoreTreshold} 
• LTN1  = {N  /  diffN1(N) > ScoreTreshold  and score(N1) < score(N)}  
• GTN1 = {N  /  diffN1(N) > ScoreTreshold  and score(N1) > score(N)}  
 

For ease of presentation we say that N1 = N2 if N2  EQN1,   N1 < N2 if N2  LTN1 
and N1 > N2 if N2   GTN1.   

 
In our runs we used ScoreThreshold = 0.4 though later experiments have shown 

that using a differentiable set of ScoreThreshold values for different components 
yields better results, but for simplicity we ignore this issue throughout the paper. 

                                                           
1 This number is extracted as part of the indexing procedure, and is stored in the index.  
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The algorithm processes the result tree bottom up and at each level diagnoses the 
correlation between the currently examined node (N1) and its descendents. An exam-
ple of such intermediate tree after score comparison is depicted in Fig 2. The color of 
each node represents its relation to the root node N1, where black > gray > white so 
for example, in Fig 2 below N1 < N2. 

 
 
 
 
 
 
 
 
 

Fig. 2. Result tree 

For each node N1 we define Good(N1) = {N / N is descendant of N1 and N1 = N} 
namely the group of all N1’s descendants with score equal to N1 under the above EQN1 
definition. The algorithm distinguishes between three main cases- 

 

1. There is some descendant node N2 with N1 < N2. (See Fig 2). This means that 
N2 is substantially more relevant than N1 thus we remove N1 from the result 
tree. 

2. There is no descendant node N under N1 such that N1 < N but there is some 
direct child node N2 such that most of Good(N1) nodes are concentrated un-
der N2 (see Fig 3 below). If we find such node N2 we remove N1 from the re-
sult tree. The rational is that in this case most of N1 score is contributed to 
the sub tree under N2 so we prefer to take N2 along this path. 

This can be measured by checking if  

|Good(N2)|/|Good(N1)| > ConcentratedThreshold  

for some configured ConcentratedThreshold. In our runs we used Concen-
tratedThreshold = 0.4.  

N1

N2

 

Fig. 3. Concentrated child 

N2 

N1 
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3. None of the previous 2 cases holds, but there is a sufficiently large number 
of good results, that are evenly distributed below N1 as depicted in Fig 4 be-
low.  This can be measured by checking if   

|Good(N1)|/|Descendant(N1)|>DescendantTreshhold  

where |Descendant(N1)| is number of all descendants of N1 in the original 
XML document, as kept in the index.  In our runs we used Descendant-
Treshhold = 0.25. This means that a relatively significant part of N1 is 
relevant and is not concentrated under a single child so we remove all the de-
scendants from the result tree and keep only N1. 

N1

 

Fig. 4. Evenly distributed results 

In all other cases (namely, no significant large node N2 under N1 and no node N2 
where most good results are concentrated and not enough good results under N1) no 
decision is taken, thus at the end of this stage overlapping elements may still be pre-
sent in the tree.  This is handled in a second brute-force filtering stage as described 
below. 

Brute-Force Filtering 
In the second filtering stage we perform a brute-force rescan of the result tree (after 
applying the modifications of the first stage) from bottom up. At each Node N1 we 
compare score(N1) to the score of all its descendants. If score(N1) is bigger we take N1 
and remove all its descendants. Otherwise we remove N1 from the result set.  

Note that the second stage could be performed even without the first stage and re-
turn a valid Focussed run. We submitted one run with both stages and the second run 
with only the second stage. As expected, the run with both stages performed better. 
For example, in the ep/gr, generalized metric it was ranked 1st with MAP 0.968 while 
our second run got MAP 0.0909. 

2.3   Fetch and Browse 

In this task we first run a regular CO.Thorough run. We then pick the article elements 
by their score and for each article we group its returned elements ranked by their 
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assigned score. We use <rank> instead of <rsv> for this submission because by this 
ordering elements scores as expressed by <rsv> are not sorted anymore. Our runs 
were ranked among the top 10 but not as the best ones so we still need to investigate 
this task. 

3   CO+S Runs 

The aim of the CO+S task was to investigate the usefulness of structural hints. For all 
three sub tasks (CO+S.Thorough, CO+S.Focussed & CO+S.FetchBrowse) we applied 
our Vague CAS approach (as will be shown in section 4 below) on the topic’s  
<castitle>. 

The results of most participants show that in general the CO runs performed better 
than the CO+S runs. Our own submissions have shown improvements for CO+S in 
the thorough runs only. For example, with the ep/gr generalized metric, our 
CO+S.Thorough run got MAP 0.0925 while our CO.Thorough run got MAP 0.0896. 
It should be noted that both were ranked 1st in their corresponding metric. 

In the Focussed runs our CO performed better than the CO+S in all metrics. For 
example, with the ep/gr generalised metric, our CO.Focussed run got MAP 0.0968 
while our CO+S.Focussed run got MAP 0.0809. Again both were ranked 1st in their 
corresponding metric.  

In light of these results, we might conclude that structural hints are useful only 
when used as a real filter and not when used in a broader vague interpretation as de-
fined by the CO+S task.  

4   CAS Runs 

Similar to previous years, the CAS topics were given by an XPath[7] expression ex-
tended with the about predicate that is interpreted in a broad vague semantics. XPath 
defines the last element in the path as a target element while all other query elements 
can be referenced as support elements. While in previous years the CAS task was sub 
classified into Vague (VCAS) and Strict (SCAS) sub tasks, an attempt was made this 
year to separate the vagueness of the target element from the vagueness of the support 
elements. Thus a combination of four sub tasks was defined : 

• VVCAS – Both target and support are vague 

• SSCAS  – Both target and support are strict 

• SVCAS – Target is strict and support is vague 

• VSCAS – Target is vague and support is strict. 

We decided to use the traditional SCAS and VCAS runs considering only the Vague-
ness of the target element in each CAS task. Therefore we submitted the four INEX 
tasks according to the following mapping – 

 
 



 Using the INEX Environment as a Test Bed for Various User Models 193 

INEX task Our submission 

VVCAS VCAS 

SSCAS   SCAS 

SVCAS SCAS 

VSCAS VCAS 

 
Similar to previous INEX years we translated the CAS queries from XPath to 

XML Fragments [1, 3]. The difference between SCAS and VCAS runs was achieved 
along two dimensions: synonym expansion and structural enforcement as described 
below. 

Synonym Expansion 
Synonym expansion is a mechanism to define equivalent tags. In VCAS runs we used 
all the considered elements (except the article and the abs) as synonyms to each other 
namely {bdy, sec, ss1, ss2, p, ip1, bdy}. In SCAS runs we used two separate synonym 
groups: {bdy, sec, ss1, ss2} and {p, ip1}. This means that for example if <sec> is 
defined as a target element then in a VCAS runs <p> elements will be also returned 
but not in a SCAS runs. 

Structural Enforcement 
One of the nice features of XML Fragments[1, 3] is that it allows defining a plus (‘+’) 
prefixing both on content and/or on structure.  

For example topic 244 – 

//article[about (.//fm, "query optimization")]//sec[about (., "join query optimiza-
tion")] 

Is translated to XML Fragments[1, 3] as  

<article> 
      +<fm>query optimization</fm> 
     +<sec>join query optimization</sec> 
</article> 

A ‘+’ on a tag means that the tree below the tag is mandatory. So in the above ex-
ample a result (<sec>) is returned only if it’s containing article has both the <fm> 
constraint and the <sec> constraint. The default semantics in XML fragments is ‘or’ 
so removing the ‘+’ as in 

<article> 
      <fm>query optimization</fm> 
     <sec>join query optimization</sec> 
</article> 

will return <sec> even if the containing article does not have the <fm> constraint.  
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An article complying with the <fm> constraint will be ranked higher though, thus 
increasing the <sec>'s score via the pivot mechanism due to the Pivot scale as defined 
in step 4 of the component ranking algorithm from Fig 1.  

For each of the VCAS and SCAS runs we submitted one run with ‘+’ on the struc-
ture and a second run without ‘+’ on structures. In both runs we treated phrases as 
simple words and we ignored plus on content 

In the sequel we show our performance on the four CAS tasks and it can be clearly 
seen that having the ‘+’ on structure performs better on the SCAS runs while remov-
ing the ‘+’ from structure performs better on the VCAS runs. 

4.1   VVCAS Results 

Both our runs (with and without ‘+’ on structure) were ranked top in the nxCG and 
the ep/gr in the generalized metric. Still the run which ignored the plus on structure 
preformed clearly better. This makes sense since it allows more vagueness in the 
structure. 

4.2   SSCAS Results 

Both our runs were at the top ten and there was no clear preference to the one with the 
plus on structure or to the other one. 

4.3   VSCAS Results 

Both our runs won top results (1st and 2nd) on both nxCG and ep/gr metrics but with 
no clear distinctions which of the two is better. 

4.4   SVCAS Results 

Again both runs won top results in most of the metrics where in most cases the run 
which treat structure strictly was better in most cases. This makes sense for SCAS 
since it assumes more strictness in the structure. 

5   Discussion and Summary 

We described a new algorithm for the “Focussed” run and we showed our approach 
and algorithms for the rest CO, CO+S and CAS tasks. Our main findings are that our 
component ranking algorithms performed quite well and our runs in all ten tasks were 
ranked at top places mostly in the ep/gr generalised metric. We found out that 
ignoring phrase boundaries and ignoring ‘+’ on content give best results. Regarding 
structural hints for CO runs we found out that they helped in the Thorough task but 
disturbed in the Focussed task. The conclusion might be that structural hints are valu-
able only when used as a real filter, and not when used merely as recommendations as 
defined by the CO+S tasks. For CAS runs we found out that the separation of 
strict/vagueness in target element vs. rest of the elements was artificial. Another con-
clusion is that XML Fragments [1,3] enables another level of strict/vagueness through 
the ‘+’ on structure.  
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Abstract. Digital libraries offer convenient access to large volumes of
text, but finding the information that is relevant for a given informa-
tion need is hard. The workshops of the Initiative for the Evaluation of
XML retrieval (INEX) provide a forum for testing the effectiveness of re-
trieval strategies. In this paper, we present the two strategies used by the
University of Kaiserslautern at INEX 2005: The first method uses back-
ground knowledge about the document schema (element relationships)
to support queries with structural constraints. The second method ex-
ploits structural patterns in the retrieval results to find the appropriate
results among overlapping elements. In the evaluation of the official re-
sults from the workshop, we find that element relationships does not
improve retrieval quality for the test collection, but that patterns can
lead to improved early precision.

1 Introduction

The Initiative for the Evaluation of XML Retrieval (INEX)1 provides a testbed
for comparing the effectiveness of content-based XML retrieval systems. The Uni-
versity of Kaiserslautern actively participated in the INEX workshop for the first
time in 2005. Our retrieval approach is based on standard vector-space retrieval
on the elements, enhanced with XML-specific additions (element relationship
and context patterns).

Element relationship aims at better supporting queries with vague structural
hints. It uses background knowledge of the document schema to allow matching
of similar element types for increased recall. Context patterns address the choice
of a suitable result granularity, one of the central problems of element retrieval:
Due to the tree structure of XML documents, retrieval results can overlap, so the
search engine needs to decide which of the overlapping results are more suitable
to answering the query. Context patterns are based on the observation that
the structural properties of retrieval results, like length and position, provide
valuable hints about the importance of the retrieved elements.

1 see http://inex.is.informatik.uni-duisburg.de/
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Our paper is structured as follows: We first present a brief description of
our baseline retrieval system in Section 2 and then proceed to explain our im-
provements in Section 3. Finally, we discuss the performance of our baseline and
enhanced results as evaluated in the INEX workshop in Section 4.

2 Baseline Search Engine

The basic structure of our retrieval system is simple [2]: We use the Apache
Lucene information retrieval engine2 as the basis and add XML retrieval func-
tionality. Instead of storing only the complete articles from the document col-
lection in the index, we store each element’s textual contents as a (Lucene)
document, enriched with some metadata (most notably, the enclosing XML doc-
ument and the XPath within that document); see Fig. 1 for an example.

〈sec〉Hello, 〈b〉world!〈/b〉
How 〈i〉are〈/i〉 you?
〈/sec〉

XPath Indexed contents

/sec[1] Hello, world! How are you?
/sec[1]/b[1] world!
/sec[1]/i[1] are

Fig. 1. Source document and corresponding indexed documents as seen by Lucene

Directly searching this index using Lucene would lead to bad results—overlap
is not taken into account at all, and many elements on their own are useless
because they are too small—, so we need to postprocess the Lucene results.
We regard the results from different input documents as independent, so we
can postprocess the results from each document separately (even concurrently).
Overlapping results from the same document are arranged in a tree that mirrors
the structure of the original XML document; this enables us to examine the
relationships between the elements. Thus, retrieval is executed in these five steps
(the enhancements from Section 3 are applied in step 3):

Operation Output

1. Process query and send it to Lucene Raw retrieval results (fragments)
2. Rearrange retrieval results One result tree per document
3. Postprocess the result trees One result tree per document
4. Merge the results Flat list of results
5. Adjust scores of short elements Flat list of results

2.1 Handling Short Results

Our baseline search engine gives rise to an anomaly that is normally not of
concern in traditional information retrieval: At the lowest levels in the XML
2 see http://lucene.apache.org
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documents, the elements’ textual contents are very short, so they may even be
identical to the query. In the vector space model, documents that are identical
to the query are considered perfect matches with a maximum similarity, but
they are clearly useless to the searcher. Even discounting “obviously” too short
elements, length plays an important role for perceived relevance: Kamps at al.
[4] observed that the length of the retrieved elements is closely related to the
assessed relevance. Although they found that simply discarding short results is
not optimal, we decided to perform score adjustment based on element length
alone, because this provides for a reasonable improvement in retrieval quality
with little overhead.

Instead of just removing the very short results (we still need them in the index
for our pattern-based approach), we adjust the score based on the word count.
If the score is changed to zero, this is effectively the same as discarding the
results, but more fine-grained control is possible: The border between “too short
to return” and “long enough” is not clear-cut, but gradual. Thus, we multiply
each element’s score by a factor that solely depends on the element’s length. In
addition to reducing the score of very short elements (shorter than about 10 to 20
lines of text), we also reduce the scores of extremely long elements (longer than a
typical article). We do this because we consider returning very long elements not
useful in element retrieval, where it is the aim to return the shortest fragments
that answer the user’s query. Given l as the length of an element in words, each
element’s score is multiplied by f(l), where

f(l) =
{

σ(l, 0.1, 75) : l ≤ 200
σ(l, 0.001, 10000) : l > 200

and σ is the sigmoid function shifted s to the right and scaled by d:

σ(l, d, s) =
(
1 + ed·−(l−s)

)−1

In effect, results that are about 100 to 6 000 words long are hardly affected,
and results shorter than 50 or longer than 13 000 words have their score reduced
to (almost) zero. Fig. 2 shows a plot of this function.

2.2 Query Processing

The queries in the INEX topics are formulated in NEXI, an XML query lan-
guage derived from XPath with additional information retrieval functions [7].
For content-only (CO) queries, we support the full semantics of NEXI with the
following modifications:

– We discard query terms with the “-” qualifier (instead of asserting that they
do not occur in the retrieved elements).

– Query terms prefixed with “+” are assigned a higher weight (instead of as-
serting that they occur in the retrieved elements).

– The modifiers “and” and “or” are ignored.
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Fig. 2. Handling short results. In the left figure, we see that we reduce the scores of
very short elements, and in the right figure, we see that we also punish extremely long
elements.

For content-and-structure (CAS) queries, only the last tag name in paths is
used for searching (for example, given //article//fm//atl, we prefer all atl
elements, not only those contained in //article//fm). Furthermore, we consider
the structural parts of the query only as hints for the best elements to retrieve.
For this reason, we only submitted runs to the VVCAS task, where structural
constraints for both the target and support elements are interpreted as vague.

3 Enhancements to the Baseline Search Engine

The search engine we described in the previous section provides the basis for
the implementation of our new approaches. On top of it, we implemented two
different enhancements that are executed as a postprocessing step; they are
mostly orthogonal, so they can be applied in any combination.

3.1 Element Relationship

Many XML schemas for document authoring specify tags for semantic markup.
DocBook, for example, has a filename tag that is used to specify that the
contained text designates a file name. This markup is useful, in particular for
CAS queries, because it enables the searcher to more exactly specify what he
wants to retrieve. When we examined real-world documents, we realized that
this markup is often not used correctly (possibly because of the author’s laziness,
possibly because no tag exactly matching the author’s intention exists), or that
there are several tags for closely related concepts. We had the idea to create a
graph for allowing near misses of the markup specified in structural queries, the
element relationship graph (ERG) [1, 2]. This inexactness obviously means that
strict CAS queries (as implemented in the SSCAS, SVCAS, and VSCAS tasks)
cannot be supported; we only support the VVCAS task, where both the target
and support elements that are specified in the query are considered as hints only.



200 P. Dopichaj

The ERG contains the tag names from the document schema as leaves and
places them in a semi-hierarchical graph that captures semantic relations be-
tween the tag names. Each category is assigned a coherence value in the range
zero to one that denotes to what degree the contained tag names are similar;
this information is used for similarity calculation, see below for an example.

The approach is not well suited to visual markup that only denotes how the
marked-up text should look, instead of what the semantics are. Unfortunately,
the collection of IEEE magazine articles that is used for INEX uses only visual
markup for the body of the text (the front matter and the bibliography are more
structured, but they are rarely the target of queries); we tried to construct an
ERG for this data anyway to see how well element relationship can cope with
situations it was not designed for.

We based our ERG on the information available in xmlarticle.dtd, the main
part of the collection’s document type definition (DTD). In addition to the purely
syntactic information used by the XML parser, the DTD also contains consis-
tently formatted comments that indicate a two-level hierarchical structure, as
we can see in Fig. 3(a). We wrote a script to convert this DTD to an ERG, as-
signing a coherence of 0.5 to all second-level headings and of 0.2 to the first-level
headings; Fig. 3(b) shows the result of the conversion. Obviously, the higher-level
categories do not correspond to tag names in the collection. These abstractions
could be useful for improving the search interface (as O’Keefe [6] stated, users
are unlikely to remember hundreds of tag names, so a simplified “query DTD”
should be used instead of the collection DTD).

We also modeled the tags described as equivalent in the NEXI description [7],
for example, the various types of sections, by including them in the ERG with
a coherence of 1.

Only the last tag name from each path in the NEXI query is taken as the cate-
gory to search in (as described in Section 2.2). If a retrieval result is embedded in
an element with that tag name, its score is taken as is, otherwise we go upwards
in the ERG and try to match any tag name from the same category, reducing
the score by multiplying it with the corresponding coherence. For example, if
we search in hdr, but a match is in a hdr1 element, we halve the original score
because we needed to generalize to a second-level category.

For more details about applying element relationship, see our previous work
on this topic [1, 2].

3.2 Context Patterns

Exploiting element relationships is only feasible if the schema of the document
collection are fixed and the administrator is willing and able to create an element
relationship graph. If this is not the case, one needs schema-independent methods
to improve retrieval results. Fortunately, there are several telltale signs what the
role of a given element in a text is, without having to examine the tag name.
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〈!-- ============ --〉
〈!-- FRONT MATTER --〉
〈!-- ============ --〉
〈!ELEMENT fm (hdr?, (edinfo|au|tig|pubfm|abs|edintro|kwd|fig|figw)*)〉
〈!-- ++++++ --〉
〈!-- HEADER --〉
〈!-- ++++++ --〉
〈!ELEMENT hdr (fig?, hdr1, hdr2)〉
〈!ELEMENT hdr1 (#PCDATA|crt|obi|pdt|pp|ti)*〉
〈!ELEMENT hdr2 (#PCDATA|crt|obi|pdt|pp|ti)*〉

(a) Excerpt from xmlarticle.dtd. The comments indicate the semantic structure
of the elements.

(b) The ERG for the DTD excerpt. The numbers denote the coherence values.

Fig. 3. Construction of the element relationship graph

We can achieve this by looking at result contexts of the retrieved nodes. For
each non-leaf node, the result context consists of this node and its children, and
the following data is stored for each node:

– The retrieval score of the node,
– the length of the node (in words), and
– the position of the node in the parent node.

This information can be visualized in two dimensions, one for the lengths and
positions of the text fragments and the other for the score. Fig. 4 shows an
example XML fragment and how it can be visualized. The horizontal position of
the left-hand side of each rectangle denotes the starting position in the text of
the parent element, and its width corresponds to the length of the text it contains
(this implies that the parent element occupies the width of the diagram). The
parent element (in the Fig. 4, the root element /sec[1]) is the reference for the
scale of the horizontal axis.

When we examined context graphs of some trial retrieval results, we real-
ized that we could often determine what elements were section titles or inline
elements, without referring to the original XML documents. Based on this ob-
servation, we defined a set of context patterns for formalizing the recognition of
certain structures. A pattern looks like, “if the first child in the context is short
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〈sec〉
Hello, 〈b〉world!〈/b〉
How 〈i〉are〈/i〉 you?
〈/sec〉

position
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e

0

0.2

0.4

0.6
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1

/s
ec

[1
]

//b
[1

]

//i
[1

]

Fig. 4. XML text and corresponding context diagram. The horizontal axis denotes the
positions and lengths of the text fragments, and the vertical axis shows the score (in
this case random numbers).

and the parent is long, the first child is a title” (see Fig. 5 for an example).
This is too vague for Boolean logic, but fuzzy logic is perfectly suitable for this
task. Fuzzy logic enables us to assign degrees of membership for the features,
instead of Boolean values [5]. For example, a fragment containing only one word
is definitely short, and a fragment containing 5000 words is definitely not short,
but what about one containing 20 words? With fuzzy logic, we do not need to
make a firm decision, but we can say that this fragment is short to a degree of
(for example) 50%. Similarly, the Boolean operators like and, or, and not can
be expressed in terms of these degrees.

position
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e
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4

Fig. 5. Example context graph for the
title pattern. The short peak at the left
is the section title.
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Fig. 6. An example for the inline pat-
tern. The peaks are italicized one- or
two-word phrases.

The patterns alone do not change the retrieval results in any way, so we need
to take actions for modifying the relevant scores. For a match in a title, an
appropriate action is to increase the parent’s score (because the match indicates
that the corresponding section is highly relevant) and decrease the first child’s
score (because the title itself contains too little information to be of any use).

We defined and examined several patterns; apart from the title pattern men-
tioned above, the inline pattern proved to be the most worthwhile, whereas the
other patterns had no noticeable effect on the retrieval quality. It is based on the
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assumption that single words or short phrases directly contained in any markup
denote some form of emphasis (in the IEEE collection, very short marked-up
elements are typically embedded in b or i elements, denoting bold and italics).
If the author of the text decided to apply such emphasizing markup to phrases,
this is often an indication that the surrounding element is especially relevant for
queries mentioning the phrases. Therefore, if many of an element’s children are
very short and have high scores, we increase the element’s score. Fig. 6 shows
an example of an occurrence of this pattern.

4 Evaluation

One important aspect of INEX is the comparison of XML search engines. In this
section, we will describe what runs we submitted, examine the official results
and present some post-INEX improvements of our methods.

4.1 Submitted Runs

We only participated in some of the subtasks of the ad-hoc task. For each of the
CO and CO+S tasks, both focused and thorough, we submitted three runs:

1. Basic, which applied both element relationship and length-based score cor-
rection to the Lucene results (this was our baseline).

2. Pattern, which applied element relationship, length-based score correction
and context patterns.

3. Pattern-NoERG, which applied length-based score correction and context
patterns.

For the runs based on element relationship, we searched for the query terms
in the category Emphasis, which contains inline elements for printing in bold
or italics. As we shall later see, the selection of runs turned out to be a bad
choice, since element relationship actually downgraded the retrieval quality of
our systems for the content-only (CO) tasks. Because of this, we have no baseline
for our best-performing run in the official results. For completeness, we generated
this missing run (Basic-NoERG) in order to compare it to Pattern-NoERG.

Our system does not support any type of strict CAS queries, as the element-
relationship approach was designed with vague structural matching in mind,
so we did not submit any runs to the VSCAS, SVCAS, and SSCAS subtasks.
For the VVCAS subtask, where only two runs per organization were permitted,
we included only Pattern and Pattern-NoERG. The Pattern-NoERG run still
rewards exact matches of the specified target elements, but all non-exact matches
are considered equally bad (that is, their score is multiplied by 0.1).

For the focused subtasks, we used our thorough results and applied some
postprocessing to each result tree: We repeatedly add the result with the highest
RSV to the retrieval result and remove all overlapping results.
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4.2 Official Results

This year’s INEX workshop offered a plethora of retrieval tasks and evaluation
metrics because there are different views on what constitutes a good retrieval re-
sult; therefore, it is difficult to make clear statements. Nevertheless, the following
points are fairly clear (see Fig. 11, 12, and 13 in the appendix):

– Our system is more competitive with generalized quantization; with strict
quantization, our ranks drop significantly.

– As expected, our results are better at high precision levels: For the top-
ranked results up to roughly the 30th place, we fare well compared to the
competition, but after this point, our result quality is only average.

– Only for the top-ranked results, the pattern-based approach is better than
the corresponding baseline; as we later found out, this is due to undesirable
interactions of several context patterns (see the next section for details).

– Employing element relationships did not lead to noticeable improvements for
VVCAS (all our VVCAS runs are very close to one another), and actually
degraded retrieval quality for the CO runs. Although the schema of the IEEE
document collection that is used for INEX is not well-suited to our approach,
we expected a better outcome, so we will need to investigate the cause.

The U form of the curves for generalized quantization is due to the fact that the
ideal recall base for the vast majority of topics is much smaller than the 1 500
results that are the scale for the x axis. This leads to the ideal run increasing
monotonically until all relevant results are retrieved. After this point, it will
remain constant at this level.

A real run aiming at improving early precision will probably have a high
number of relevant results at the very beginning, followed by a lower, more
or less constant rate of relevant results. This leads to a steep decline in the
beginning, up to the point where the ideal run runs out of results, where a low,
constant increase starts.

4.3 Post-INEX Evaluation of Context Patterns

The counter intuitive results for our pattern-based runs—better than the base-
line at low cut-off points, significantly worse at higher cut-off points—prompted
us to perform further analysis. The original implementation that was used for
the runs submitted to INEX evaluated several patterns without properly isolat-
ing them, so we re-implemented that short after the deadline has passed. An
evaluation of this new implementation based on the INEX assessments reveals
that this does indeed appear to be the cause for the bad quality at higher cut-off
values (see Fig. 7).

We also evaluated the effect of the patterns we had used for the INEX sub-
missions and found that only two of them have any noticeable effect on retrieval
quality, the title pattern and the inline pattern described in Section 3.2.

Another interesting observation is that applying the two patterns in com-
bination leads to worse results than applying the title pattern alone for the
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Fig. 7. Comparison of the submitted runs and a pattern run with bug fixes (task
CO.Focused)
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Fig. 8. Post-INEX evaluation of inline and title versus only the title pattern (without
element relationship, task CO.Focused)

top-ranked documents (it does improve results for the lower ranks), as we can
see in Fig. 8.

Obviously, a lot more research is needed on the context patterns, but the
initial results are promising.

4.4 The Impact of Structural Hints in the Queries

Most of the CO topics (19 out of 29) also featured a CAS query in addition to
the CO query. This query should be aimed at the same information need, but
specify additional structural constraints that the topic author deemed useful for
improving retrieval performance. As we can see in Fig. 9, CO+S definitely helps
if we use element relationship (at least for the lower cutoffs up to about 20%
of the result list). In this case, using element relationship leads to a small but
consistent improvement.

This comparison should not be overrated, however, since several of the CAS
queries did more than just add structural constraints that are impossible to
express in pure CO queries. The worst example is the topic where we achieved
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Fig. 9. Comparison of CO and CO+S (Focused, nxCG, generalized). The thick lines
are the CO+S results.
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Fig. 10. Comparison of CO and CO+S, omitting questionable queries (Focused, nxCG,
generalized). The thick lines are the CO+S results.

the greatest improvement with CO+S; the CAS query misspelled a word that
was spelled correctly in the CO query, but apparently made irrelevant results
turn up high in the list.

We observed the following shortcomings in the CO+S topics:

Inclusion of phrases in only one of the queries. Phrases are equally well
supported in CO and CAS queries. Topics 205, 207.

Different keywords. (This does not include the addition of constraints that
can only be expressed in CAS) Topics 222, 234, 233.

Changed modifiers. Topic 230.
Spelling in CAS query is even worse than in CO query. Topic 222.

These shortcomings can lead to differences not caused only by the inclusion
of structural constraints, so we performed another comparison with these six
topics omitted. Fig. 10 shows that this leads to a clear separation of the CO
and CO+S curves, as well as an improvement when using element relationship.
This appears to imply that structural hints help our retrieval system at least for
focused searches.
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5 Conclusions

As we have seen, the runs applying element relationships failed badly for the
CO tasks and did not produce a consistent improvement even for the VVCAS
and CO+S runs; this can in part be explained by the mismatch of the type of
markup expected by this method and the markup supplied by the document
collection.

Context patterns showed more promising results, but we still need to investi-
gate why the quality of our retrieval results declines more rapidly than those of
the other participants.
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A Official INEX Results
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Fig. 11. Official results for CO.Focused, metric nxCG. The left graphs show the whole
range of cutoffs whereas the right graphs show the results up to 1% cutoff.
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Fig. 12. Official results for CO.Thorough, metric nxCG.
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Fig. 13. Official results for VVCAS, metric nxCG
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Abstract. This paper explores the possibility of using a modified Ex-
pectation-Maximization algorithm to estimate parameters for a simple hi-
erarchical generative model for XML retrieval. The generative model for
an XML element is estimated by linearly interpolating statistical language
models estimated from the text of the element, the parent element, the
document element, and its children elements. We heuristically modify EM
to allow the incorporation of negative examples, then attempt to maxi-
mize the likelihood of the relevant components while minimizing the like-
lihood of non-relevant components found in training data. The technique
for incorporation of negative examples provide an effective algorithm to es-
timate the parameters in the linear combination mentioned. Some experi-
ments are presented on the CO.Thorough task that support these claims.

1 Introduction

In previous work [1][2][3], we proposed using hierarchical language models for
ranking XML document components for retrieval. However, we left the problem
of estimating parameters as future work. In this work, we present a parameter
estimation method for a simplified version of the hierarchical language models.

In this work we construct a language model for each element in the document.
We linearly interpolate the parent’s unsmoothed language model, each child’s
unsmoothed language model, the document’s unsmoothed language model, and
the collection language model. This simplification allows us to formulate the
parameter estimation problem simply so that we can apply the Generalized
Expectation Maximization algorithm [4].

However, we observed that this approach places the most weight on the doc-
ument language model, which results in very poor retrieval performance. We
heuristically modify the likelihood we wish to maximize by including negative
examples. These negative examples are non-relevant elements that come from
documents that contain relevant elements. While our inclusion of negative ex-
amples ad-hoc, we have found it to work well in practice.

The next section describes the model in detail, and Section 3 presents the Gen-
eralized Expectation Maximization (GEM) algorithm for the model. Section 4
presents our adaptation of the GEM algorithm to include negative examples. We
present experimental methodology and describe our system in Section 5. Section 6
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contains our experiments with using the GEM algorithm on CO.Thorough task,
and conclusions and discussion is contained in Section 7.

2 Model

We rank elements by estimating the probability that the language model esti-
mated for the element generated the query. We use simple unigram language
models, which are multinomial probability distributions over words in the vo-
cabulary. That is, a language model μ specifies P (w |μ ). Document elements
are then ordered by P (Q |μe ) =

∏|Q|
i=1 P (qi |μe ) where μe is the language model

estimated for a particular element e.
In order to estimate the language model μe, we note that we would like to

incorporate evidence from the document, its parent, and its children. With that
in mind, we estimate μe as a linear combination of several language models 1 :

P (w |μe ) = λP P
(
w
∣∣θP (e)

)
+λDP

(
w
∣∣θd(e)

)
+λCP (w |θC )
+λO

|s(e)|
|s(e)|+

∑
j′∈c(i) αt(j′)|j′|P

(
w
∣∣λs(e)

)
+λO

∑
j∈c(e)

αt(j′)|j|
|s(e)|+

∑
j′∈c(i) αt(j′)|j′|P (w |λj )

(3)

where θx refers to a language model estimated for x, P (x) refers to the parent
of x, d (x) refers to the document containing x, s (x) refers to the element x
(self), c (x) returns a list containing the children of x, t (x) refers to the element
type of the element x (such as bdy or sec), and C refers to the entire collection.
We choose to set the λ parameters in the interpolation to be constant across

1 Unfortunately, due to a bug in our system we did not rank elements by P (Q |μe ).
In our official submissions, we ranked by

P
(
Q
∣∣θ′

P (e)

)λP × P
(
Q
∣∣θ′

d(e)

)λD

×P
(
Q
∣∣θ′

s(e)

)λO
|s(i)|

|s(i)|+
∑

j′∈c(i) α
t(j′)|j′|

×∏j∈c(e) P
(
Q
∣∣θ′

j

)λO

∑
j∈c(e)

α
t(j′)|j|

|s(e)|+
∑

j′∈c(i) α
t(j′)|j′|

(1)

where
P
(
w
∣∣θ′

x

)
= (1 − λC)P (w |θx ) + λCP (w |θC ) (2)

This model does allow relative weighting of the different structural elements of mes-
sages in the thread. However, it does not have the intended effect of combining
evidence at the word level; it only combines query level evidence. This model corre-
sponds to the linear weighted combination of log probabilities, which we investigated
in [5]. We will refer to ranking by P (Q |θe ) as the mixture method and Equation 1
as the post query combination approach.

Rather than discuss our official submissions in Section 6, we will present experi-
ments using the corrected P (Q |θe ).
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all elements in the collection to reduce the number of parameters we must es-
timate. The α parameters allow us to provide additional weight to the children
of elements, where the weight is dependent on the type of the child element.
Note that we also multiply alpha by the length of the element, which results in
an assumption that the extra value of a child element is dependent on both the
type and length of the child.

In this work, we will take θx to be the Maximum Likelihood Estimate from
the text contained in x, which is given by:

P (w |θx ) =
count of w in text of x

length in words of text of x
(4)

Note that this is different than our previous work. In our previous work, we
excluded the text of the child’s elements when performing hierarchical smooth-
ing. In this model we include that text. This allows a more clear and consistent
parameter estimation scheme. The αt parameters represent the additional value
of a word in elements of type t. Additionally, we do not recursively smooth the
elements. This is a limiting factor in current work that simplifies the parameter
estimation process.

We also apply a linear length prior [6] to our rankings. That is, we multiply
P (Q |θe ) by length (e) to obtain the retrieval status values used in our rankings.

3 Parameter Estimation Using EM

This section describes howwe estimate parameters for ranking results by P (Q |θe ).
Suppose there are M language models in the collection, which we will denote

θ1, θ2, . . . , θM .

Suppose that we are given some queries and rankable elements that are rel-
evant to these queries. We will treat words in these queries as observations of
sampled terms drawn from the relevant elements:

x = (x1, x2, . . . , xN ) ,

where we denote the relevant elements as

μ1, μ2, . . . , μN .

Note that there may be repeated query terms and elements in these lists; this is
not an issue in the estimation process.

Let us now assume that the μ elements are linear interpolations of the ele-
ments, giving:

P (x |μi ) =
M∑

j=1

λijP (x |θj ) . (5)

This results in a model where we do not know the Λ=(λ11, . . . , λNM ) parameters.
We would like to maximize the probability of P (x |μ ). In order to reduce the

number of parameters we must estimate in this model, we will assume that each
μi is estimated from using a small number of elements we willcall the family
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of i. In relation to the model presented before, the family of i will be child
elements, the collection element, its parent element, its document element and
the element itself:

family (i) =
(
θ1, θdocument(i), θparent(i), θself(i)

)
∪k∈children(i) (θk)

or using the first letter as an abbreviation for the document, parent, self and
children functions:

family (i) =
(
θ1, θd(i), θp(i), θs(i)

)
∪k∈c(i) (θk) . (6)

where θ1 is the special collection model used for smoothing. As a reminder, θ1
is estimated using the maximum likelihood estimate using the entire text of the
document collection. Given the family of element i, we can rewrite Equation 5 as

P (x |μi ) =
∑

j∈f(i)

λijP (x |θj ) , (7)

greatly reducing the number of parameters we must estimate. Note that we also
place the constraints

λij ≥ 0,
∑

j∈f(i)

λij = 1 (8)

upon the Λ parameters.
However, there are still many cases where we must estimate λ parameters for

texts and we have no training data, as the x vector is very small in compari-
son to the total number of rankable texts in the corpus. We must make further
assumptions to reduce the parameter space. Given our understanding of the
XML retrieval domain, we will assume constant parameters across all models
for the combination with the collection, document and parent elements. For the
children elements, we will assume that the weight placed should be a simple func-
tion of the t = type of the child element and its length. Under these assumptions:

λij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λC if j = 1,

λD if j = d (i) ,

λP if j = p (i) ,

λO
|j|

|s(i)|+
∑

j′c(i) αt(j′)|j′| if j = s (i) ,

λO
e

βt(j) |j|
|s(i)|+

∑
j′c(i) αt(j′)|j′| if j ∈ c (i) ,

0 otherwise.

(9)

where the type function returns a value in (1, 2, . . . , T ). This now greatly re-
duces the number of parameters we must estimate to T + 4. In addition to the
constraints in Equation 8, we place this additional constraint:
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λC + λD + λP + λO = 1 (10)

Given Equation 9, we can rewrite Equation 7 using the parameters we must
estimate:

P (x |μi ) = λCP (x |θ1 ) + λDP
(
x
∣∣θd(i)

)
+ λP P

(
x
∣∣θp(i)

)

+λO

⎛
⎜⎜⎝

|i|
|i|+

∑
j∈c(i) αt(j)|j|P

(
x
∣∣θs(i)

)
+

∑
j∈c(i)

αt(j)|j|
|i|+

∑
j∈c(i) αt(j)|j|P (x |θj )

⎞
⎟⎟⎠

(11)

We would like to maximize the likelihood of the observed data, which is

L (Λ |X ) = P (x |μ ) =
N∏

i=1

P (xi |μi ) =
N∏

i=1

M∑
j=1

λijP (xi |θj ) (12)

Unfortunately, the summation within the product makes it difficult to differen-
tiate, so we must use an alternative approach to maximizing the likelihood. We
choose to use the Expectation-Maximization method to optimizing the likeli-
hood. Given our formulation of the problem, we can derive the following update
rules for our Λ and αk parameter estimates:

λ
[t]
C = 1

N

∑N
i=1 P

(
y = 1

∣∣xi, Λ
[t−1]

)
λ

[t]
D = 1

N

∑N
i=1 P

(
y = d (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
P = 1

N

∑N
i=1 P

(
y = p (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
O = 1

N

∑N
i=1
∑

j∈(s(i))∪c(i) P
(
y = j

∣∣xi, Λ
[t−1]

)

α
[t]
k = log

(
α

[t−1]
k

)
−

∂

∂ log(αk)Q(Λ,Λg)
αk=α

[t−1]
k

∂2

∂ log(α2
k)

Q(Λ,Λg)
αk=α

[t−1]
k

(13)

where

∂
∂αk

Q (Λ, Λg)αk=αg
k

= αg
k

∑
i:j∈c(i),t(j)=k

−aikfik+ bikhik
α

g
k

bik+αg
kaik

∂2

∂α2
k
Q (Λ, Λg)αk=αg

k
= αg

k

⎛
⎜⎜⎜⎝

∂
∂αk

Q (Λ, Λg)αk=αg
k
+

αg
k

∑
i:j∈c(i),t(j)=k

a2
ikfik−

b2
ik

hik

α
g2
k

(bik+αg
kaik)2

⎞
⎟⎟⎟⎠
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aik =
∑

j′∈c(i),t(j′)=k |j′|

bik = |s (i)| +
∑

j′∈c(i),t(j′) �=k log
(
αt(j′)

)
|j′|

fik = P (y = s (i) |xi, Λ
g ) +

∑
j∈c(i),t(j) �=k P (y = j |xi, Λ

g )

hik =
∑

j∈c(i),t(j)=k P (y = j |xi, Λ
g )

P (y = j |xi, Λ
g ) =

λg
ijP (xi|θj )∑

j′∈family(i) λg

ij′ P(xi|θj′ )

(14)

Equations 13-14 give us update rules that we can use to find locally optimal
parameters on some training data. As the derivation of these equations makes
heavy use of calculus, it is provided in the Appendix for completeness. The fol-
lowing section generalizes this technique heuristically to allow consideration of
non-relevant examples in training.

4 Incorporating Negative Examples

While the above presentation of EM to learn parameters attempts to maximize
the likelihood of training examples, doing so using only relevant elements re-
sults in very poor parameter estimation. This is a direct result of the fact that
optimizing the likelihood of relevant elements may also increase the likelihood
of elements that are not relevant. In our own experiments, using only relevant
elements during training will result in most of the weight being placed in λD.
We feel this may be a side effect of the bias-variance problem in estimation.
The document language model has more bias than the language models esti-
mated from the elements, but the variance is lower as the sample sizes are larger
for documents than for elements. When combining the language models during
smoothing, the document language models tend to have a higher likelihood of
generating the query terms due to this lower variance.

In order to combat these effects, we also include negative examples in our
training data. However, we do not wish to optimize the likelihood of the negative
examples. We would prefer to maximize the likelihood that the language models
estimated for the non-relevant elements do not generate the query terms. To
model this one might include for each non-relevant element and query term an
example where we use (1 − P (x |θj )) in place of P (x |θj ). Note that this is not
quite the same as what we one might wish to optimize, as:

1 − P (Q |μi ) 	=
|Q|∏
l=1

(1 − P (ql |μi )) (15)

However, this is a useful and effective approximation that requires only the
above substitution for negative examples. A complication in learning using the
inclusion of negative examples given above is that P (x |μi ) tends to be very
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small in relation to 1 − P (x |μi ). That means that when maximizing the log
likelihood, a small improvement of a positive example may outweigh a large
degradation in performance in a negative example.

To accommodate for that effect, we weight the negative probabilities by raising
them to a large power. For a negative example, we replace

P (x |θj ) (16)

with
(1 − P (x |θj ))νδ (17)

where ν is a user chosen parameter that specifies how much emphasis the negative
examples have relative to the positive examples and δ is chosen so that the
average probability of a term given the relevant examples is equal to the average
probability of a term given the non-relevant examples when ν = 1:

δ =
log
(

1
|positive|

∑
positive P (xi |μi )

)
log
(

1
|negative|

∑
negative P (xi |μi )

) (18)

This approach for the incorporation of non-relevant elements is ad-hoc but
effective, as we will see in the next section.

5 Experimental Methodology

We use a locally modified version of the Indri search engine of the Lemur
toolkit [7] that supports the hierarchical shrinkage. The hierarchical shrinkage
support will be made available in a December release. Release of the parameter
estimation code is scheduled for a later release as the estimation methods are
still in flux. We indexed the INEX collection using the InQuery stopword list
and the Krovetz stemmer. To process queries we removed all quotes from the
query (thus ignoring phrasal constraints) and all terms with a minus in front.

We will focus on the CO.Thorough task and present results using the strict
and generalized quantizations for nxCG[10], nxCG[25], nxCG[50], and MAP of
ep/gr to facilitate comparison to the official results presented at INEX.

6 Experiments

In this section we present experiments on the CO.Thorough task. We will disre-
gard our official submissions as they were run with the desired model and they
were not run on the entire corpus. We had some problems with using the system
that prevented us from indexing the entire corpus which have since been resolved.

We trained our parameters using the INEX 1.8 corpus and CO topics 162-201.
Using the INEX 2004 relevance assessments, we took one non-relevant document
element as a negative example for each relevant element as a positive example.
Elements were considered relevant if and only if they were highly exhaustive and
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highly specific. The non-relevant examples were taken from the same documents
as the relevant examples. Ten iterations were used for the EM algorithm. αk

values were updated only for cases where there were at least ten examples for
type k in the update rule.

Table 1 shows the a sample of the parameters the EM algorithm learned on
the training topics. As ν increases, the weight on the collection language model
(λC) decreases while the weight in the parent (λP ) slightly increases and λO,
the weight on the element and its children, noticeably increases.

With regards to the α parameters, the element type length-proportional
weights on children, a few parameters start with relatively low values and in-
crease rapidly as ν increases. Table 1 shows a few examples of this behavior. How-
ever, most parameters that are learned are very close to zero across all values of ν.
Note that we only trained these parameters for element types where at least ten
highly-specific highly-exhaustive components had a child element of that type.

There seems to be some undesirable variation in the parameters, as we can see
with the α value for the p type. This may be a side effect of the algorithm being
trained on relatively few examples for some types, but this should not be the
case for the p tag. However, as it only really matters what the value is relative
to the other tags at the same level, perhaps this variance is not an issue.

Table 1. Some parameters learned from training data. As ν increases, λC decreases
and λO increases. Some α parameters seem fairly stable, such as that of the footnote
type. Others increase greatly with larger ν while some seem somewhat erratic (e.g. p).

λ α
ν (C)ol (D)oc (P)ar O-self st p sub footnote ss1
1.0 0.475 0.222 0.035 0.268 0.38 0.23 0.00 0.28 0.50
2.0 0.385 0.212 0.037 0.365 1.07 0.00 0.22 2.49 0.37
3.0 0.342 0.210 0.040 0.408 22.75 9.77 7.77 2.22 1.75
4.0 0.321 0.210 0.041 0.428 189.28 0.00 9.42 1.83 6.01
5.0 0.309 0.213 0.043 0.435 48623.30 0.61 146.46 1.65 13289.10

Table 2 shows the effects of using the learned parameters for the CO task
on the training topics 162-201. Note that we use the new INEX-2.2 corpus, so
these results are not directly comparable to previous results on these topics. As
there are many documents that in the INEX-2.2 corpus that were not available
for assessment for the topics, one should regard the evaluation numbers as a
suboptimal estimate of performance. Nevertheless, we are mostly interested in
the relative performance of the parameters learned for different values of ν, and
the values in Table 2 should be adequate for that purpose.

In Table 2 we see that setting ν = 1 yields the most consistently good results
for both quantizations. There also seems to be some variation in the columns that
does not follow a nice curve. This is an undesirable property which could be a
result of variance in the learning algorithm, a sign of instability in the evaluation
metrics, or a symptom of too few topics to get a reliable point estimate given
the topic variance of the system.
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Table 2. Results of varying the negative weight ν on the CO task using training topics
162-201. Values in bold font indicate the largest value for a measure.

Strict Generalized
nxCG MAP nxCG MAP

ν 10 25 50 ep/gr 10 25 50 ep/gr
1.0 0.0704 0.0880 0.1307 0.0034 0.2946 0.2950 0.2944 0.0852
1.5 0.0593 0.0906 0.1266 0.0032 0.2938 0.2803 0.2710 0.0753
2.0 0.0593 0.0766 0.1237 0.0032 0.2899 0.2878 0.2816 0.0791
2.5 0.0704 0.0832 0.1226 0.0032 0.2922 0.2760 0.2637 0.0716
3.0 0.0704 0.0876 0.1210 0.0031 0.2911 0.2671 0.2536 0.0667
3.5 0.0704 0.0837 0.1218 0.0031 0.2920 0.2649 0.2490 0.0640
4.0 0.0593 0.0820 0.1197 0.0028 0.2903 0.2695 0.2447 0.0612
4.5 0.0741 0.0835 0.1219 0.0026 0.2857 0.2554 0.2383 0.0561
5.0 0.0630 0.0732 0.1087 0.0025 0.2791 0.2464 0.2256 0.0520

Table 3 shows the performance of the learned parameters on this year’s
CO.Thorough task. Performance for the generalized quantization peaks at ν = 2
and around ν = 4 for the strict quantization. This is quite a bit different from
our observations on the training data. We would like to investigate this behavior
in more detail. This could simply be the result of a training topic set that is
too small or not representative enough. An alternative cause for difference is the
change in the assessment methodology this year, which could result in assessors
behaving giving different scores.

Table 3. Results of varying the negative weight ν on the CO.Thorough task using test
topics 202-241. Values in bold font indicate the largest value for a measure.

Strict Generalized
nxCG MAP nxCG MAP

ν 10 25 50 ep/gr 10 25 50 ep/gr
1.0 0.0200 0.0639 0.1051 0.0021 0.2225 0.2298 0.2286 0.0854
1.5 0.0440 0.0623 0.0911 0.0022 0.2207 0.2218 0.2197 0.0801
2.0 0.0440 0.0639 0.1006 0.0022 0.2464 0.2421 0.2340 0.0882
2.5 0.0440 0.0655 0.1127 0.0026 0.2200 0.2215 0.2224 0.0813
3.0 0.0440 0.0712 0.1184 0.0027 0.2164 0.2221 0.2167 0.0771
3.5 0.0400 0.0744 0.1192 0.0022 0.2131 0.2189 0.2149 0.0717
4.0 0.0691 0.0747 0.1225 0.0028 0.2445 0.2248 0.2172 0.0751
4.5 0.0651 0.0715 0.1131 0.0029 0.2301 0.2144 0.2126 0.0701
5.0 0.0651 0.0731 0.1116 0.0029 0.2326 0.2183 0.2089 0.0682

If we had submitted the system optimized to the training data (ν = 1), then
our results would have been in the top 10 official submissions for the strict quan-
tization nxCG@50 metric and the generalized quantization MAP ep/gr metric.
Supposing we had worked out our kinks in training (whether they be a result
of the algorithm or the assessments) and we had selected the runs with ν = 2, 4
for evaluation, then we would have had a run performing in thetop 10 official
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submissions for the strict quantization nxCG@10,50 and MAP ep/gr metrics
and for the generalized quantization nxCG@25,50 and MAP ep/gr metrics.

7 Conclusions

We have derived a Generalized Expectation Maximization algorithm to learn the
parameters of a simple hierarchical language modeling system for the ranking
and retrieval of XML elements. We showed a way to effectively incorporate non-
relevant elements during training.

We investigated the interaction of the relative weight on the negative training
examples ν and retrieval effectiveness on the CO.Thorough task. Experimental
evidence suggests that the optimal ν parameter may depend on the quantization
function used in evaluation. However, we have not done a full investigation of the
choice of positive and negative examples during training. In training, we relied
only on elements that were highly exhaustive and highly specific. This assump-
tion is essentially the assumption of the strict quantization function. We have
not done experiments where we use elements deemed relevant by the generalized
quantization function. While we leave this to future work, we recognize this may
change the optimal choice of ν for optimizing performance for measures using
the generalized quantization function.

Our incorporation of negative examples is ad-hoc. As future work, we plan
to simulate replication of negative examples rather than directly modifying the
probabilities of the language models we are combining. This is a minor change to
the algorithm and will not change the maximum likelihood derivation presented
in Section 3, but it will be more technically sound than the current incorporation
of negative evidence presented in Section 4. We would also like to consider the
possibility of performing the negative evidence at the query level, rather than
negating probabilities at the level of query terms.

For these experiments, we workedwith a simplified hierarchicalmodel. Our pre-
vious work [1][2][3] presented a hierarchical model where elements were smoothed
recursively up and down the element containment tree for a document. This work
was a much simplified version where the smoothing was not recursive, but ad-
dressed the question of parameter estimation. We would like to adapt the training
algorithm to model recursive smoothing and learn parameters with that optimize
the likelihood under that condition.

Up to this point we have discussed only flat text queries. We would like to adapt
this approach to work with structured queries to learn approaches to weight ele-
ments of the query. For example, we may learn that satisfaction of a phrasal con-
straint should receive higher weight than a constraint on the document structure.
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Appendix: EM Derivation

Suppose we were given additional information Y = (y1, . . . , yN) which specify
that the θyi distribution generated the xi query term. Given knowledge of y, the
likelihood becomes

L (Λ |X , Y ) =
N∏

i=1

λiyiP (xi |θyi ) (19)

and the log-likelihood of the data is then

log L (Λ |X , Y ) =
N∑

i=1

log (λiyiP (xi |θyi )) (20)

The problem is now that we do not know the values of Y. However, we may treat
it as a random vector and apply Expectation-Maximization.

Suppose we have a guess at the Λ parameters we shall call Λg. Using Λg we
can compute P

(
xi

∣∣μg
j

)
. Applying Bayes rule, we calculate

P (yi |xi, Λ
g ) =

λg
iyi

P (xi |θyi )
P (xi |Λg )

=
λg

iyi
P (xi |θyi )∑M

j=1 λg
ijP (xi |θj )

=
λg

iyi
P (xi |θyi )∑

j∈family(i) λg
ijP (xi |θj )

(21)
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and

P (y |X , Λg ) =
N∏

i=1

P (yi |xi, Λ
g ) (22)

where y = (y1, y2, . . . , yN) is an independently drawn value of the random vector.
We may now estimate the expectation of Λ given Λg:

Q (Λ, Λg) =
∑

y∈Υ log (L (Λ |X ,y ))P (y |X , Λg )

=
∑M

l=1
∑N

i=1 log (λilP (xi |θl ))P (l |xi, Λ
g )

(23)

At this point we observe that to maximize this equation, we take the partial
derivative of Q (Λ, Λg) with respect to each of the Λ parameters.

When we maximize λC , we also introduce the Lagrange multiplier φ with the
constraint that λC + λD + λP + λO = 1 and solve the following equation:

∂
∂λC

[∑M
l=1
∑N

i=1 log (λilP (xi |θl ))P (l |xi, Λ
g ) + φ (λC +λD+λP +λO − 1)

]
=0

∂
∂λC

⎡
⎣
∑N

i=1 log (λC)P (y = 1 |xi, Λ
g ) + φλC

+some constants with respect to λC

⎤
⎦ = 0

1
λC

∑N
i=1 P (y = 1 |xi, Λ

g ) + φ = 0 (24)

The inclusion of the Lagrangian multiplier is a common calculus technique which
allows us to enforce the constraint that the lambda parameters sum to one.
Similarly, to maximize λD, λP , and λO, we use

1
λD

∑N
i=1 P (y = d (i) |xi, Λ

g ) + φ = 0

1
λP

∑N
i=1 P (y = p (i) |xi, Λ

g ) + φ = 0

1
λO

∑N
i=1
∑

j∈(s(i))∪c(i) P (y = j |xi, Λ
g ) + φ = 0

(25)

By summing these equations we get φ = −N . We can then obtain the following
update rules:

λ
[t]
C = 1

N

∑N
i=1 P

(
y = 1

∣∣xi, Λ
[t−1]

)
λ

[t]
D = 1

N

∑N
i=1 P

(
y = d (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
P = 1

N

∑N
i=1 P

(
y = p (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
O = 1

N

∑N
i=1
∑

j∈(s(i))∪c(i) P
(
y = j

∣∣xi, Λ
[t−1]

)
(26)
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Let us continue to the αk parameters. In order to enforce the desired constraint
that each αk be positive, we substitute αk with exp (βk) = eβk (we use e as a
shorthand for the exponential function). We will also define a few formulas to
simplify our derivations:

aik =
∑

j′∈c(i),t(j′)=k |j′|

bik = |s (i)| +
∑

j′∈c(i),t(j′) �=k βt(j′) |j′|

fik = P (y = s (i) |xi, Λ
g ) +

∑
j∈c(i),t(j) �=k P (y = j |xi, Λ

g )

hik =
∑

j∈c(i),t(j)=k P (y = j |xi, Λ
g )

(27)

To find our update rule for βk, we take the partial derivative of the likelihood
with respect to βk and solve for βk.

∂
∂βk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i:j∈c(i),t(j)=k

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

log
(

|s(i)|
bik+eβk aik

)
P (y = s (i) |xi, Λ

g )

+
∑

j∈c(i),t(j)=k log
(

eβk |j|
bik+eβk aik

)
P (y = j |xi, Λ

g )

+
∑

j∈c(i),t(j) �=k log
(

e
βt(j) |j|

bik+eβk aik

)
P (y = j |xi, Λ

g )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+some constants with respect to βk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

(28)
We first take the chain rule, resulting in the multiplier βk, then take the partial
derivative of the summation with respect to βk.

eβk
∑

i:j∈c(i),t(j)=k

⎡
⎢⎢⎢⎢⎢⎣

−aik

bik+βkaik
P (y = s (i) |xi, Λ

g )

+
∑

j∈c(i),t(j)=k
bik

eβk(bik+eβk aik)P (y = j |xi, Λ
g )

+
∑

j∈c(i),t(j) �=k
−aik

bik+eβk aik
P (y = j |xi, Λ

g )

⎤
⎥⎥⎥⎥⎥⎦ = 0

(29)

βk

∑
i:j∈c(i),t(j)=k

−aikfik + bikhik

eβk

bik + eβkaik
= 0 (30)

Since we cannot solve directly solve this equation for βk, we will use a linear
approximation around the point βg

k (Newton-Raphson method):

∂

∂βk
Q (Λ, Λg) ≈ ∂

∂βk
Q (Λ, Λg)βk=βg

k
+ (βk − βg

k)
∂2

∂β2
k

Q (Λ, Λg)βk=βg
k

(31)
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Since we set ∂
∂βk

Q (Λ, Λg) = 0,

βk ≈ βg
k −

∂
∂βk

Q (Λ, Λg)βk=βg
k

∂2

∂β2
k
Q (Λ, Λg)βk=βg

k

(32)

where
∂

∂βk
Q (Λ, Λg)βk=βg

k
= eβg

k

∑
i:j∈c(i),t(j)=k

−aikfik + bikhik

e
β

g
k

bik + eβg
k aik

(33)

and

∂2

∂β2
k

Q (Λ, Λg)βk=βg
k

= eβg
k

⎛
⎜⎜⎜⎜⎝

∂
∂βk

Q (Λ, Λg)βk=βg
k
+

eβg
k

∑
i:j∈c(i),t(j)=k

a2
ikfik−

b2
ik

hik

e
β

g 2
k(

bik+e
β

g
k aik

)2

⎞
⎟⎟⎟⎟⎠ (34)

Thus, we will have the following update rule for our βk parameter estimates:

β
[t]
k = β

[t−1]
k −

∂
∂βk

Q (Λ, Λg)
βk=β

[t−1]
k

∂2

∂β2
k
Q (Λ, Λg)

βk=β
[t−1]
k

(35)
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Abstract. This paper describes the retrieval approaches used by UC
Berkeley in our official submissions for the various Adhoc tasks. As in
previous INEX evaluations, the main technique we are testing is the fu-
sion of multiple probabilistic searches against different XML components
using different probabilistic retrieval algorithms. In addition this year we
began to use a different fusion/combination method from previous years.
This year we also continued to use re-estimated Logistic Regression (LR)
parameters for different components of the IEEE document collection,
estimated using relevance judgements from the INEX 2003 evaluation.
All of our runs were fully automatic with no manual editing or inter-
active submission of queries, and all used only the title elements of the
INEX topics.

1 Introduction

When analyzing the results of the 2004 INEX evaluation we discovered a number
of interesting approaches to XML retrieval that we had not previously explored.
In particular we were struck by the work of Mass and Mandelbrod[13] adjusting
the weights of component-level search results using the weights of document-
level matching for the same documents. This seemed to have a natural affinity
for the fusion approaches that we had already tried[11]. We ran a large number
of experiments using the INEX 2004 relevance data and various combinations
of components and weights for our version of the “pivot” value. In addition, we
participated this year in CLEF and the GeoCLEF evaluations, where we were
able to analyze the differences in performance between our fusion approaches
and the alternative version of the Berkeley Logistic regression algorithm that
has been used there for a number of years (See [3]) The best performing of
those approaches (according to the incomplete analysis using the new evaluation
methods for INEX that we were able to do in the short period between the end of
CLEF and the submission date for INEX) were used in this year’s various INEX
adhoc tasks with no modification. This is the first time that we have used blind
feedback and the “TREC2” version of Logistic regression in addition to using
the re-estimated parameters for the “TREC3” model based on the relevance
judgements from INEX 2003.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 225–239, 2006.
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In this paper we will first discuss the algorithms and fusion operators used in
our official INEX 2005 adhoc runs. Then we will look at how these algorithms and
operators were used in the various submissions for the adhoc track, and finally
we will examine the results and discuss possible problems in implementation,
and directions for future research.

2 The Retrieval Algorithms and Fusion Operators

This year we did not use the Okapi BM-25 algorithm in our official INEX adhoc
runs. Instead we used a new approach to combining and weighting the elements
using only Logistic regression-based algorithms for retrieval.

In the remainder of this section we will describe the Logistic Regression algo-
rithms that were used for the evaluation as well as the blind relevance feedback
method used in combination with the TREC2 algorithm. In addition we will
discuss the methods used to combine the results of searches of different XML
components in the collections. The algorithms and combination methods are im-
plemented as part of the Cheshire II XML/SGML search engine [10, 11, 9] which
also supports a number of other algorithms for distributed search and operators
for merging result lists from ranked or Boolean sub-queries.

2.1 TREC3 Logistic Regression Algorithm

The basic form and variables of the Logistic Regression (LR) algorithm used was
originally developed by Cooper, et al. [6]. It provided good full-text retrieval
performance in the TREC ad hoc task and in TREC interactive tasks [8] and
for distributed IR [9]. As originally formulated, the LR model of probabilistic IR
attempts to estimate the probability of relevance for each document based on
a set of statistics about a document collection and a set of queries in combina-
tion with a set of weighting coefficients for those statistics. The statistics to be
used and the values of the coefficients are obtained from regression analysis of
a sample of a collection (or similar test collection) for some set of queries where
relevance and non-relevance has been determined. More formally, given a partic-
ular query and a particular document in a collection P (R | Q, D) is calculated
and the documents or components are presented to the user ranked in order
of decreasing values of that probability. To avoid invalid probability values, the
usual calculation of P (R | Q, D) uses the “log odds” of relevance given a set of
S statistics, si, derived from the query and database, such that:

log O(R | Q, D) = b0 +
S∑

i=1

bisi (1)

where b0 is the intercept term and the bi are the coefficients obtained from the
regression analysis of the sample collection and relevance judgements. The final
ranking is determined by the conversion of the log odds form to probabilities:

P (R | Q, D) =
elog O(R|Q,D)

1 + elog O(R|Q,D) (2)
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Based on the structure of XML documents as a tree of XML elements, we
define a “document component” as an XML subtree that may include zero or
more subordinate XML elements or subtrees with text as the leaf nodes of the
tree. For example, in the XML Document Type Definition (DTD) for the INEX
test collection defines an article (marked by XML tag <article>) that contains
front matter (<fm>), a body (<bdy>) and optional back matter (<bm>). The
front matter (<fm>), in turn, can contain a header <hdr> and may include ed-
itor information (<edinfo>), author information (<au>), a title group (<tig>),
abstract (<abs>) and other elements. A title group can contain elements in-
cluding article title (<atl>) the page range for the article (<pn>), and these
in turn may contain other elements, down to the level of individual formatted
words or characters. Thus, a component might be defined using any of these
tagged elements. However, not all possible components are likely to be useful in
content-oriented retrieval (e.g., tags indicating that a word in the title should
be in italic type, or the page number range) therefore we defined the retrievable
components selectively, including document sections and paragraphs from the
article body, and bibliography entries from the back matter (see Table 3).

Naturally, a full XML document may also be considered a “document com-
ponent”. As discussed below, the indexing and retrieval methods used in this
research take into account a selected set of document components for generat-
ing the statistics used in the search process and for extraction of the parts of a
document to be returned in response to a query. Because we are dealing with
not only full documents, but also document components (such as sections and
paragraphs or similar structures) derived from the documents, we will use C
to represent document components in place of D. Therefore, the full equation
describing the LR algorithm used in these experiments is:

log O(R | Q, C) =

b0 +

⎛
⎝b1 ·

⎛
⎝ 1

|Qc|

|Qc|∑
j=1

log qtfj

⎞
⎠
⎞
⎠

+
(
b2 ·
√

|Q|
)

+

⎛
⎝b3 ·

⎛
⎝ 1

|Qc|

|Qc|∑
j=1

log tfj

⎞
⎠
⎞
⎠ (3)

+
(
b4 ·

√
cl
)

+

⎛
⎝b5 ·

⎛
⎝ 1

|Qc|

|Qc|∑
j=1

log
N − ntj

ntj

⎞
⎠
⎞
⎠

+ (b6 · log |Qd|)

Where:

Q is a query containing terms T ,
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|Q| is the total number of terms in Q,
|Qc| is the number of terms in Q that also occur in the document component,
tfj is the frequency of the jth term in a specific document component,
qtfj is the frequency of the jth term in Q,
ntj is the number of components (of a given type) containing the jth term,
cl is the document component length measured in bytes.
N is the number of components of a given type in the collection.
bi are the coefficients obtained though the regression analysis.

This equation, used in estimating the probability of relevance in this research, is
essentially the same as that used in [5]. The bi coefficients in the original version
of this algorithm were estimated using relevance judgements and statistics from
the TREC/TIPSTER test collection. In INEX 2005 we did not use the original or
“Base” version, but instead used a version where the coeffients for each of the ma-
jor document components were estimated separately and combined through com-
ponent fusion. The coefficients for the Base version were b0 = −3.70, b1 = 1.269,
b2 = −0.310, b3 = 0.679, b4 = −0.0674, b5 = 0.223 and b6 = 2.01. The re-
estimated coefficients were derived from the Logistic regression analysis using
the INEX 2003 relevance assessments. In fact, separate formulae were derived for
each of the major components of the INEX XML document structure, providing
a different formula for each major component of the collection. These formu-
lae were used in all the TREC3 LR runs submitted for the INEX 2005 adhoc
tasks, The components and coefficients for each of bi in formula 4 are shown in
table 1.

Table 1. Re-Estimated Coefficients for The TREC3 Logistic Regression Model

Index b0 b1 b2 b3 b4 b5 b6

Base -3.70 1.269 -0.310 0.679 -0.0674 0.223 2.01
topic -7.758 5.670 -3.427 1.787 -0.030 1.952 5.880
topicshort -6.364 2.739 -1.443 1.228 -0.020 1.280 3.837
abstract -5.892 2.318 -1.364 0.860 -0.013 1.052 3.600
alltitles -5.243 2.319 -1.361 1.415 -0.037 1.180 3.696
sec words -6.392 2.125 -1.648 1.106 -0.075 1.174 3.632
para words -8.632 1.258 -1.654 1.485 -0.084 1.143 4.004

2.2 TREC2 Logistic Regression Algorithm

We also implemented a version of the LR algorithm that has been used very suc-
cessfully in Cross-Language IR by Berkeley researchers for a number of years[3].
This algorithm, originally developed by Cooper et al. [4] for TREC2 is:

log O(R|C, Q) = log
p(R|C, Q)

1 − p(R|C, Q)
= log

p(R|C, Q)
p(R|C, Q)

= c0 + c1 ∗ 1√
|Qc| + 1

|Qc|∑
i=1

qtfi

ql + 35
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+ c2 ∗ 1√
|Qc| + 1

|Qc|∑
i=1

log
tfi

cl + 80

− c3 ∗ 1√
|Qc| + 1

|Qc|∑
i=1

log
ctfi

Nt

+ c4 ∗ |Qc|

where C denotes a document component and Q a query, R is a relevance variable,

p(R|C, Q) is the probability that document component C is relevant to query
Q,

p(R|C, Q) the probability that document component C is not relevant to query
Q, which is 1.0 - p(R|C, Q)

|Qc| is the number of matching terms between a document component and a
query,

qtfi is the within-query frequency of the ith matching term,
tfi is the within-document frequency of the ith matching term,
ctfi is the occurrence frequency in a collection of the ith matching term,
ql is query length (i.e., number of terms in a query like |Q| for non-feedback

situations),
cl is component length (i.e., number of terms in a component), and
Nt is collection length (i.e., number of terms in a test collection).
ck are the k coefficients obtained though the regression analysis.

If stopwords are removed from indexing, then ql, cl, and Nt are the query length,
document length, and collection length, respectively. If the query terms are re-
weighted (in feedback, for example), then qtfi is no longer the original term
frequency, but the new weight, and ql is the sum of the new weight values for
the query terms. Note that, unlike the document and collection lengths, query
length is the “optimized” relative frequency without first taking the log over the
matching terms.

The coefficients were determined by fitting the logistic regression model speci-
fied in log O(R|C, Q) to TREC training data using a statistical software package.
The coefficients, ck, used for our official runs are the same as those described
by Chen[1]. These were: c0 = −3.51, c1 = 37.4, c2 = 0.330, c3 = 0.1937 and
c4 = 0.0929. Further details on the TREC2 version of the Logistic Regression
algorithm may be found in Cooper et al. [4].

2.3 Blind Relevance Feedback

It is well known that blind (also called pseudo) relevance feedback can substan-
tially improve retrieval effectiveness in tasks such as TREC and CLEF. (See
for example the papers of the groups who participated in the Ad Hoc tasks in
TREC-7 (Voorhees and Harman 1998)[16] and TREC-8 (Voorhees and Harman
1999)[17].)

Blind relevance feedback is typically performed in two stages. First, an initial
search using the original queries is performed, after which a number of terms are
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selected from the top-ranked documents (which are presumed to be relevant).
The selected terms are weighted and then merged with the initial query to for-
mulate a new query. Finally the reweighted and expanded query is run against
the same collection to produce a final ranked list of documents. It was a simple
extension to adapt these document-level algorithms to document components
for INEX.

The TREC2 algorithm has been been combined with a blind feedback method
developed by Aitao Chen for cross-language retrieval in CLEF. Chen[2] presents
a technique for incorporating blind relevance feedback into the logistic regression-
based document ranking framework. Several factors are important in using blind
relevance feedback. These are: determining the number of top ranked documents
that will be presumed relevant and from which new terms will be extracted, how
to rank the selected terms and determining the number of terms that should
be selected, how to assign weights to the selected terms. Many techniques have
been used for deciding the number of terms to be selected, the number of top-
ranked documents from which to extract terms, and ranking the terms. Harman
[7] provides a survey of relevance feedback techniques that have been used.

Lacking comparable data from previous years, we adopted some rather arbi-
trary parameters for these options for INEX 2005. We used top 10 ranked compo-
nents for the initial search of each component type, and enhanced and reweighted
the query terms using term relevance weights derived from well-known Robert-
son and Sparck Jones[14] relevance weights, as described by Chen and Gey[3].
The top 10 terms that occurred in the (presumed) relevant top 10 documents,
that were not already in the query were added for the feedback search.

2.4 Result Combination Operators

As we have reported previously, the Cheshire II system used in this evaluation
provides a number of operators to combine the intermediate results of a search
from different components or indexes. With these operators we have available
an entire spectrum of combination methods ranging from strict Boolean opera-
tions to fuzzy Boolean and normalized score combinations for probabilistic and
Boolean results. These operators are the means available for performing fusion
operations between the results for different retrieval algorithms and the search
results from different different components of a document. We will only describe
one of these operators here, because it was the only type used in the evaluation
reported in this paper.

The MERGE CMBZ operator is based on the “CombMNZ” fusion algorithm
developed by Shaw and Fox [15] and used by Lee [12]. In our version we take the
normalized scores, but then further enhance scores for components appearing in
both lists (doubling them) and penalize normalized scores appearing low in a
single result list, while using the unmodified normalized score for higher ranking
items in a single list.

A new addition for this year was a merge/reweighting operator based on
the “Pivot” method described by Mass and Mandelbrod[13]. In our case the
new probability of relevance for a component is a weighted combination of the
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initial estimate probability of relevance for the component and the probability
of relevance for the entire article for the same query terms. Formally this is:

P (R | Q, Cnew) = (X ∗ P (R | Q, Ccomp)) + ((1 − X) ∗ P (R | Q, Cart)) (4)

Where X is a pivot value between 0 and 1, and P (R | Q, Cnew), P (R | Q, Ccomp)
and P (R | Q, Cart) are the new weight, the original component weight, and
article weight for a given query. Although we found that a pivot value of 0.54
was most effective for INEX04 data and measures, we adopted the “neutral”
pivot value of 0.5 for all of our 2005 adhoc runs, given the uncertainties of how
this approach would fare with the new metrics and tasks.

3 INEX 2005 Adhoc Approach

Our approach for the INEX 2005 adhoc tasks was a bit different from the meth-
ods used in previous INEX 2003 and INEX 2004 evaluations. This section will
describe the indexing process and indexes used, and also discuss the scripts used
for search processing. The basic database was the expanded IEEE collection. We
will summarize the indexing process and the indexes used in the adhoc tasks for
reference in the discussion.

3.1 Indexing the INEX 2005 Database

All indexing in the Cheshire II system is controlled by an XML/SGML Config-
uration file which describes the database to be created. This configuration file
is subsequently used in search processing to control the mapping of search com-
mand index names (or Z39.50 numeric attributes representing particular types
of bibliographic data) to the physical index files used and also to associated
component indexes with particular components and documents. This configura-
tion file also includes the index-specific definitions for the Logistic Regression
coefficients (when not defined, these default to the “Base” coefficients shown in
Table 1).

Table 2 lists the document-level (/article) indexes created for the INEX data-
base and the document elements from which the contents of those indexes were
extracted. These indexes (with the addition of the are the same as those used
last year. The abstract, alltitles, keywords, title, topic and topicshort indexes
support proximity indexes (i.e., term location), supporting phrase searching.

As noted above the Cheshire system permits parts of the document subtree
to be treated as separate documents with their own separate indexes. Tables 3
& 4 describe the XML components created for INEX and the component-level
indexes that were created for them.

Table 3 shows the components and the path used to define them. The first,
COMP SECTION, component consists of each identified section or subsection
(<sec> ... </sec>) in all of the documents, permitting each individual sec-
tion and subsection of a article to be retrieved separately. Similarly, each of
the COMP BIB, COMP PARAS, and COMP FIG components, respectively,
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Table 2. Cheshire Article-Level Indexes for INEX

Name Description Contents Vector?
docno Digital Object ID //doi No
pauthor Author Names //fm/au/snm No

//fm/au/fnm
title Article Title //fm/tig/atl No
topic Content Words //fm/tig/atl Yes

//abs
//bdy
//bibl/bb/atl
//app

topicshort Content Words 2 //fm/tig/atl Yes
//abs
//kwd
//st

date Date of Publication //hdr2/yr No
journal Journal Title //hdr1/ti No
kwd Article Keywords //kwd No
abstract Article Abstract //abs Yes
author seq Author Seq. //fm/au No

@sequence
bib author Bib Author Forename //bb/au/fnm No
fnm

bib author Bib Author Surname //bb/au/snm No
snm

fig Figure Contents //fig No
ack Acknowledgements //ack No
alltitles All Title Elements //atl, //st Yes
affil Author Affiliations //fm/aff No
fno IEEE Article ID //fno No

treat each bibliographic reference (<bb> ... </bb>), paragraph (with all of
the alternative paragraph elements shown in Table 3), and figure (<fig> ...
</fig>) as individual documents that can be retrieved separately from the entire
document.

Table 4 describes the XML component indexes created for the components de-
scribed in Table 3. These indexes make individual sections (COMP SECTION)
of the INEX documents retrievable by their titles, or by any terms occurring
in the section. These are also proximity indexes, so phrase searching is sup-
ported within the indexes. Bibliographic references in the articles (COMP BIB)
are made accessible by the author names, titles, and publication date of the
individual bibliographic entry, with proximity searching supported for bibliog-
raphy titles. Individual paragraphs (COMP PARAS) are searchable by any of
the terms in the paragraph, also with proximity searching. Individual figures
(COMP FIG) are indexed by their captions, and vitae (COMP VITAE) are in-
dexed by keywords within the text, with proximity support.



Probabilistic Retrieval, Component Fusion and Blind Feedback 233

Table 3. Cheshire Components for INEX

Name Description Contents
COMP SECTION Sections //sec //ss1 //ss2 //ss3
COMP BIB Bib Entries //bib/bibl/bb
COMP PARAS Paragraphs //ilrj|//ip1|//ip2|

//ip3|//ip4|//ip5|
//item-none|//p|
//p1|//p2|//p3|
//tmath|//tf

COMP FIG Figures //fig
COMP VITAE Vitae //vt

Table 4. Cheshire Component Indexes for INEX †Includes all subelements of para-
graph elements

Component
or Index Name Description Contents Vector?
COMP SECTION
sec title Section Title //sec/st Yes
sec words Section Words //sec Yes
COMP BIB
bib author Bib. Author //au No
bib title Bib. Title //atl Yes
bib date Bib. Date //pdt/yr No
COMP PARAS
para words Paragraph Words *† Yes
COMP FIG
fig caption Figure Caption //fgc No
COMP VITAE
vitae words Words from Vitae //vt No

Almost all of these indexes and components were used during Berkeley’s
search evaluation runs of the 2005 INEX topics. The official submitted runs
and scripts used in INEX are described in the next section.

3.2 INEX 2005 Official Adhoc Runs

Berkeley submitted a total of 20 retrieval runs for the INEX 2005 adhoc tasks,
these included 3 for each of the CO and CO+S Focussed and Thorough
tasks, two each for CO and COS FetchBrowse tasks and one run each for the
VVCAS, VSCAS, SVCAS and SSCAS tasks. This section briefly describes the
individual runs and general approach taken in creating the queries submitted
against the INEX database and the scripts used to prepare the search results for
submission. The following sections briefly describe Berkeley’s INEX 2005 runs.
Note that all of the runs used only the “title” or “castitle” elements of the INEX
2005 topics in searching.
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Fig. 1. Berkeley THOROUGH Runs – Strict (left) and Generalized (right) Quanti-
zation

3.3 CO and CO+S Runs

Essentially the same basic component retrieval runs were used with different
post-retrieval processing for the Thorough, Focussed, and FetchBrowse tasks.
Our primary focus was on the Thorough task, since that was most similiar to
our most effective runs from previous INEX evaluations. The three runs for each
of the CO and CO+S Thorough and Focussed tasks were:

LRPIV: Runs containing this term in their names used the TREC3 algorithm
as described above for all retrieval ranking. The basic results were the com-
bination of searches on each of the component types described in Table
3 using the TREC3 algorithm with component scores scaled using doc-
ument level scores using the Pivot method described above with a pivot
value of 0.5.

T2: Runs containing this term in the name used the TREC2 algorithm in place
of the TREC3 algorithm, but were otherwise the same.

T2FB: Runs containing this term in the name used the TREC2 algorithm with
Blind Feedback as described above, but otherwise were the same as “T2”
runs.
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The primary tasks that we focussed on were the CO.Thorough and CO+S.
Thorough tasks. For these tasks some automatic expansion of items in the
XPath to the root of the document was used. The same data was used for the
CO.Thorough and CO+S.Thorough tasks, but post-processing restricted results
to (approximately) those matching the structural constraints of the “castitle”
for the CO+S task. Figure 1 shows the thorough tasks. In the graphs shown in
Figure 1 a line giving the means for each data point over all submitted runs for
the task are also shown. As Figure 1 shows, the results for all of our runs in
these tasks exceeded the average for all systems.

For the CO and COS Focussed tasks, post-processing kept only the highest
ranking non-overlapping elements from the unexpanded version of results. As
the very poor results for the Focussed runs show, this trimming of the results
was overly harsh, and eliminated many of the relevant items in the initial set.
(In fact, the results for the focussed tasks were so bad that we are conducting
a complete analysis of where the post-retrieval processing caused them to fail).
Figure 2 shows the results of our runs for these tasks, in all cases these runs
were considerably below the mean for all runs in these tasks, and in most cases
includes the worst performing run overall for the task. For the strict quantization
(first column of Figure 2) the TREC2 algorithm with blind feedback at least
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Fig. 2. Berkeley FOCUSSED Runs – Strict (left) and Generalized (right) Quantization
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performed better than our other two runs. However for generalized quantization
(second column of Figure 2) the TREC2 with blind feedback run is the worst
performing run.

The summary average MAnxCG@10 results for the runs discussed above are
shown in Table 5 for both generalized and strict quantizations. In Table 5 the
tasks are shown in column 2, and the run names indicate the algorithm used
(i.e., LRPIV is the TREC3 algorithm, T2 is the TREC2 algorithm and T2FB is
the TREC2 algorithm with blind feedback).

Table 5. Berkeley Adhoc Runs, Tasks, and Results

Run Name Task MAnxCG@10 MAnxCG@10
Q=gen Q=strict

CO PIV50 LRPIV FOC CO.Focussed 0.0518 0.0038
CO PIV50 T2 FOC CO.Focussed 0.0692 0.0115
CO T2FB PIV50 NOV CO.Focussed 0.0510 0.0132
CO PIV50 LRPIV FOC COS COS.Focussed 0.0637 0.0000
CO PIV50 T2 FOC COS COS.Focussed 0.0818 0.0118
COS T2FB PIV50 NOV COS.Focussed 0.0731 0.0378
CO PIV50 LRPIV EXP THR CO.Thorough 0.2170 0.0231
CO PIV50 T2 EXP THR CO.Thorough 0.2324 0.0462
CO T2FB PIV50 THR CO.Thorough 0.2820 0.0746
CO PIV50 LRPIV COSTHR COS.Thorough 0.2289 0.0471
CO PIV50 T2 COSTHR COS.Thorough 0.2494 0.0588
COS T2FB PIV50 ALL EXP COS.Thorough 0.2289 0.0529
LRPIV SSCAS SSCAS 0.2039 0.1250
LRPIV SVCAS SVCAS 0.2061 0.1000
LRPIV VSCAS VSCAS 0.2205 0.1167
LRPIV VVCAS VVCAS 0.1997 0.0778

Unlike our attempt at INEX 2004 to use a simple form of “blind feedback”
that used only the kwd element of the documents, use of the TREC2 algorithm
and Blind Feedback with terms selected by relevance values, showed a fairly
consistent improvement over the TREC2 algorithm alone, or the TREC3 algo-
rithm alone. This was the case for Berkeley runs in CLEF and it was pleasing
to see that it was equally applicable in INEX. We hope to do further analysis to
attempt to determine the optimal number of records to use in feedback and the
optimal number of additional terms to include in the reformulated query).

3.4 CAS Runs

Our approach to the 4 CAS tasks was to run them almost identically to the
method used in INEX 2004, with a few additional constraints on the structural
matching criteria. Only a single run for each of CAS tasks was submitted, and
all of the runs used just the TREC3 ranking algorithm. (Given the effectiveness
shown by the T2FB for the CO tasks, we now wish that we had submitted runs
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Fig. 3. Berkeley SSCAS and SVCAS Runs – Strict (left) and Generalized (right) Quan-
tization
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Fig. 4. Berkeley VVCAS and VSCAS Runs – Strict (left) and Generalized (right)
Quantization

using that combination for consideration as well). Overall, the Berkeley CAS
runs performed above average among the other submissions, with the SVCAS
and VSCAS runs faring best among our CAS submissions. Figures 3 and 4 show
our results for the “V-” and “S” tasks respectively, each figure also includes the
overall average results for all runs for these tasks. Note that there was virtually
no difference between the results obtained for our SSCAS and SVCAS runs, and
similarly no difference between the results for our VVCAS and VSCAS runs
(hence in Figures 3 and 4 the lines for our runs overlay each other. Our runs
were well above average for all CAS tasks except for the SSCAS task, where we
fell below the mean.

3.5 FetchBrowse Runs

We were informed that all of our FetchBrowse runs were rejected due to a sorting
problem that incorrectly interleaved a few entries from separate documents in
one topic. Therefore we have no official results for the FetchBrowse task.
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4 Conclusions and Future Directions

Considerable further analysis needs to be done to digest the vast number of
variables, metrics and tasks introduced in this year’s INEX and to make sense of
their implications for future adaptations of our system. Overall, however, we have
been pleased to discover that the TREC2 with Blind Feedback method seems to
work consistently better for INEX tasks than the TREC3 algorithm alone. We
hope to further examine these results and to conduct further experiments to see
whether combinations (fusion) of these algorithms will be more or less effective
than the base algorithms alone. We also plan to do a more detailed analysis of
the post-processing steps used this year to discover if some of the poorer results
were simply the result of post-processing errors.

One approach to improving the combination of multiple components with
collection level results (as done in the “pivot” method describe above would be to
use regression analysis to determine an optimal pivot coefficient for the different
components of the existing INEX database, where the dependent variable is the
relevance of the component.
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Abstract. The INEX 2005 evaluation consisted of numerous tasks that required 
different approaches.  In this paper we described the approach that we adopted 
to satisfy the requirements of all the tasks, CAS and CO, in Thorough, Focused, 
and Fetch Browse mode, using the same underlying system  The retrieval ap-
proach is based on the construction of a collection sub-tree, consisting of all 
nodes that contain one or more of the search terms. Nodes containing search 
terms are then assigned a score using a TF_IDF variant, scores are propagated 
upwards in the document XML tree, and finally all XML elements are ranked.   
We present results that demonstrate that the approach is versatile and produces 
consistently good performance across all INEX 2005 tasks. 

Keywords: XML Information Retrieval, XML Search Engine, Inverted Files, 
XML-IR, Focused retrieval. 

1   Introduction 

The widespread use of Extensible Markup Language (XML) documents in digital 
libraries has lead to development of information retrieval (IR) methods specifically 
designed for XML collections [5,6]. XML is rapidly becoming the accepted standard 
for storage, communication, and exchange of information. Most information in typical 
XML documents is expressed in free form texts. INEX investigates the idea of using 
the specifics of XML retrieval to allow users to address content and structural needs. 
Like in traditional information retrieval, the user need is loosely defined and answers 
to queries are typically ranked lists of relevant elements. Like in database querying, 
structure is of importance and a simple list of keywords may not be sufficient to de-
fine a query.  Most traditional IR systems are limited to whole document retrieval; 
however, since XML documents separate content and structure, XML-IR systems are 
able to retrieve the relevant portions of documents. Users interacting with XML-IR 
system could be interested in highly relevant and highly precise material below the 
document level.  XML-IR systems are built on top of traditional IR and are thus typi-
cally more complex than their traditional counterparts, and many challenges remain 
unsolved. These issues were specifically addressed by the series of INEX workshops 
from 2002 to 2005, with marked improvement in performance of most systems [5,6]. 

Since all text IR systems base retrieval on keywords, if we ignore query expansion 
for a moment, one would expect that all systems would be able to identify the same 
candidate set of documents in response to a query when given the same set of key-
words.  Often it is possible to identify many tens of thousands of XML elements with 
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a given set of keywords.  The key difference between systems is in the all important 
ranking of candidate documents.  We identify five important problems to solve in 
performing IR on an XML collection: 

1. Adequate selection of elements that satisfy the keywords constraints.  
2. Adequate selection of elements that satisfy the structural constraints. 
3. The assignment of scores to nodes with matching keywords/structures. 
4. The propagation of scores to antecedent or descendant elements. 
5. The selection of ranked lists of results for specific tasks. 

Steps 1 and 5 are common to ordinary text collection IR systems. Steps 2 to 4 are ad-
ditional steps that are required in the context of XML oriented IR, and all systems 
participating at INEX have implemented them one way or another.  Unlike in tradi-
tional IR, rather than identify relevant documents, the XML IR system is required to 
select and score elements at different levels of granularity. 

This paper presents a system that provides a simple yet very effective and robust 
approach to the selection and ranking problem, and provides an effective and efficient 
design.   A fully inverted index includes the exact location in the collection of each 
instance in which each term occurs.  Of course such cross-reference listings predate 
computers.  Typically in an inverted list for a term, the term locations would be stored 
as pairs {document-id, term-position}.  Often index compression is applied to the 
inverted lists which can be highly compressible[7].  We chose to invert the XML col-
lection by XPath – the location of each term is identified by an absolute XPath ex-
pression.  With that simple conceptual representation of a single index (the XPath 
inverted list) we are able to address all the problems that are presented by the INEX 
2005 set of ad-hoc tasks, without ever having to consult the collection itself. 

In the remainder of this article we discuss our system implementation, the ap-
proach taken to the new INEX tasks (FetchBrowse and Focused Retrieval), and then 
present and discuss the evaluation results.  The GPX search engine had not changed 
much since 2004, but a description is included here for the sake of completeness. 

2   XML Document Inversion 

The entire collection is inverted in one pass and inverted lists are stored in a Microsoft 
Access database.   It should be noted that the actual storage structure is an implementa-
tion dependent issue that does not impact on the algorithms that are described here for 
performing XML IR.  It can be implemented as a database or with conventional files, 
or it may even be a memory resident structure.  The only requirement is that given a 
term, the system is able to (efficiently) return the inverted list for that term. 

In our scheme each term in an XML document is identified by 3 elements.  File 
path, absolute XPath context, and term position within the XPath context.  The file 
path identifies documents in the collection; for instance: 

C:/INEX/ex/2001/x0321.xml 

The absolute XPath expression identifies a leaf XML element within the document, 
relative to the file’s root element:  

/article[1]/bdy[1]/sec[5]/p[3] 
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Finally, term position identifies the ordinal position of the term within the XPath 
context. 

In principle at least, a single table can hold the entire cross reference listing of the 
collection (our inverted index). Table 1 contains the Xpath column of several rows in 
the inverted list that correspond to a particular term. 

Table 1. XPath table content example 

Context XPath 
article[1]/bdy[1]/sec[6]/p[6]/ref[1] 
article[1]/bdy[1]/sec[6]/p[6]/ref[1] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pdt[1]/day[1] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pp[1] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[15] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[15] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/ti[1] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/obi[1] 

The structure of the database used to store the inverted lists is depicted in Figure 1. It 
consists of 4 tables.  The Terms table is the starting point of a query on a given term.  
Two columns in this table are indexed - The Term column and the Term_Stem col-
umn.  The Term_Stem column holds the Porter stem of the original term.  The 
List_Position is a foreign key from the Terms table into the List Table.  It identifies 
the starting position in the inverted list for the corresponding term.  The List_Length 
is the number of list entries corresponding to that term.  The List table is (transpar-
ently) sorted by Term so that the inverted list for any given term is contiguous.  

A search proceeds as follows. Given a search term we obtain a starting position 
within the List table.  We then retrieve the specified number of entries by reading 
sequentially.  The inverted list thus obtained is Joined (SQL) with the Document and 
Context tables to obtain the complete inverted list for the term.   

 

Fig. 1. Schema for XML Inverted File 



 GPX – Gardens Point XML IR at INEX 2005 243 

3   Query Interpretation 

INEX provides a test collection of over 16,000 IEEE journal articles, a set of queries 
and a set of evaluation metrics. Two types of queries were used at INEX 2005: CO 
and CAS. Content Only (CO) queries ignore document structure and only contain 
content stipulations. In contrast Content and Structure queries (COS,VVCAS, 
SVCAS, VSCAS, SSCAS) explicitly express both content and structural require-
ments. Both CO and CAS queries (with the exception of SSCAS) are expected to re-
turn appropriately sized relevant elements – not just whole documents, and all queries 
are loosely interpreted with respect to structural and keyword constraints – the over-
riding goal is to satisfy the user’s information need rather than the strict query formu-
lation.  SSCAS queries require strict adherence to the query's structural constraints.  
Figures 2 and 3 are examples of both query types.  

The description, title, and castitle elements express the user’s information needs. 
The description expresses the user's need in natural language. The title expresses the 
user's information need as a list of keywords/phrases.  The castitle is a formal XPath-
like expression using NEXI – the formal INEX query specification language [3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. CO Query 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. CAS Query 

The syntax of NEXI is similar to XPath, however, NEXI only uses XPath’s descen-
dant axis step, and extends XPath by incorporating an ‘about’ clause to provide an  IR-
like query. NEXI’s syntax is //A[about(//B,C)] where A is the context path, B is the 

<inex_topic topic_id="XX" query_type="CO"> 
<title> 
  "multi layer perceptron" "radial basis 

functions" comparison 
</title> 
<description> 
  The relationship and comparisons between 

radial basis functions and multi layer per-
ceptrons 

</description> 
</inex_topic> 

<inex_topic topic_id="XX" 
query_type="CAS"> 

<castitle> 
  //article[about(.,information re-

trieval)]//sec[about(.,compression)] 
</castitle> 
<description> 
  Find sections about compression in 

articles about information retrieval. 
</description> 
</inex_topic> 
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relative path and C is the content requirement. Conceptually each ‘about’ clause in a 
NEXI query represents an individual information request. So conceptually the query 

 //A[about(//B,C)]//X[about(//Y,Z)]  
 

    contains two requests: 
 

 //A[about(//B,C)] 
     and 

 //A//X[about(//Y,Z)].  

However, in NEXI only elements matching the leaf (i.e. rightmost) ‘about’ clause, 
the second request here, are flagged as of direct interest to the user. We refer to these 
requests and elements as ‘return requests' and ‘return elements’. Elements that match 
the other ‘about’ clauses, the first request here, are used to support the return ele-
ments in ranking. We refer to these requests and elements as ‘support requests’ and 
‘support elements’. It should be noted that under vague interpretation of structural 
constraints it  is often acceptable to return elements whose XPath signature does not 
strictly conform to the query specification.  The structural constraints are regarded as 
retrieval hints, much in the same way that keywords are regarded as retrieval hints. 

4   Processing NEXI Queries 

A NEXI query may consist of multiple sub-queries that can be evaluated in isolation, 
before being considered together to determine the final results list.  Our evaluation of 
complex NEXI expressions is based on parsing and evaluation of the sub-queries. 
Each sub-query produces a result-tree consisting of all the elements that contain at 
least one of the keyword in the query (or a synonym, or any other term deemed rele-
vant through term expansion), and are in the right context – where structural 
constraints are taken into consideration too. For instance, in CAS queries the strict 
constraints eliminate nodes that are not of the specified type.  Each node in the result 
tree contains the necessary information to allow the computation of a score, using a 
variation of TF-IDF [2,7].  After the result-tree is constructed, a traversal of the result-
tree generates the score for each node, from leaves to root.  The results from all sub-
trees, corresponding to the query, are finally combined (as described in the next 
section) to produce a single result tree.  These results are then organized as a list and 
sorted according to the task on hand, with the top N results returned (N=1500 for the 
ad-hoc track).   We generate Thorough, Focused, and Fetch-Browse results from the 
same result tree in a post processing step.  In fact, the result tree is our approximation 
of the full recall base of scoring elements.  Different ordered  sub-sets for the various 
tasks are derived from it. 

5   Element Scoring Scheme 

Elements are ranked according to a relevance score. In our scheme leaf and branch 
elements need to be treated differently.  Data in the INEX collection usually occurs at 
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leaf elements, and thus, our inverted list mostly stores information about leaf ele-
ments. A leaf element is considered candidate for retrieval if it contains at least one 
query term. A branch node is candidate for retrieval if it contains a relevant child 
element. Once an element (either leaf or branch) is deemed to be a candidate for re-
trieval its relevance score is calculated. A heuristically derived formula (Equation 1) 
is used to calculate the relevance score of leaf elements. The same equation is used 
for both return and support elements. The score is determined from query terms con-
tained in the element.  It penalizes elements with frequently occurring query terms 
(frequent in the collection), and it rewards elements with more unique query terms 
within a result element.  (Note that the same calculation also applies to nodes with 
text that are not leaves, but in the INEX collection only leaves contain text). 

Equation 1: Calculation of a Leaf Element’s Relevance Score 

−
n

=i i
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f
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1

1
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Here n is the count of unique query terms contained within the leaf element, K is a 
small integer (we used K=5).  The term Kn-1 scales up the score of elements having 
multiple distinct query terms.  The system is not sensitive to the value of K – we ex-
perimented with K=5 to 25 with little difference in results.    The sum is over all terms 
where ti is the frequency of the ith query term in the leaf element and fi is the fre-
quency of the ith query term in the collection.  This sum rewards the repeat occurrence 
of query terms, but uncommon terms contribute more than common terms. We found 
this variation to work much better than TF-IDF alone because it gives much greater 
weight to nodes that contain more unique search terms, overriding the impact of the 
inverse document frequency on common terms – but only when they occur in a pref-
erable context, i.e. with other search terms. 

Once the relevance scores of leaf elements have been calculated, they can be used 
to calculate the relevance score of branch elements. A naïve solution would be to just 
sum the relevance scores of each branch’s relevant children. However, this would 
ultimately result in root (i.e. article) elements accumulating at the top of the ranked 
list, a scenario that offers no advantage over document-level retrieval. Furthermore, 
the specificity of nodes in the XML tree typically decreases as we move up the tree – 
article is less specific than a section which is less specific than a paragraph. There-
fore, the relevance score of leaf elements should be somehow decreased while being 
propagated up the XML tree. On the other hand, when a node has multiple scoring 
descendants, its exhaustivity (coverage of the topic) usually increases. To account for 
this, a heuristically derived formula (Equation 2) is used to calculate the scores of 
intermediate branch elements.  

Equation 2: Calculation of a Branch Element Relevance Score 
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Where: 
      
     n = the number of children elements 
    D(n) = 0.49   if n = 1 
       0.99   Otherwise 
    Li = the relevance score of the ith child element 

The value of the decay factor D depends on the number of relevant children that the 
branch has. If the branch has one relevant child then the decay constant is 0.49. A 
branch with only one relevant child will be ranked lower than its child.  If the branch 
has multiple relevant children the decay factor is 0.99. A branch with many relevant 
children will be ranked higher than its descendants.  Thus, a section with a single rele-
vant paragraph would be judged less relevant than the paragraph itself, but a section 
with several relevant paragraphs will be ranked higher than any of the paragraphs. 

Having computed scores for all result and support elements, the scores of support 
elements are added to the scores of the corresponding result elements that they sup-
port.  For instance, consider the query: 

//A[about(.//B,C)]//X[about(.//Y,Z)] 

The score of a support element matching //A will be added to all result elements 
Matching //A//X but only if  the specific element A is the ancestor of the specific 
elements X (same file, same absolute Xpath up to and including A). 

Finally, the results consist of an entire recall tree for the query where each node is 
individually scored. At that point the score of each article (document root) node is 
added to the result of each node in that same article – thereby boosting the scores of 
all elements that belong to an article with many other scoring elements.   

When a NEXI expression contains multiple filters the system constructs a result-
tree for each of the filters. After the score of each node in each trees is determined, the 
scores of support elements (i.e. elements that satisfy a support filter in the NEXI ex-
pression) are added, to boost the scores of the corresponding return elements.  In this 
manner, everything else being equal, elements with support tend to be ranked higher 
than elements without support.   

6   Treatment of CAS Variants 

The INEX ad-hoc track aimed to answer some questions with respect to the utility of 
the various filters of a NEXI expression.  Four different sub-tasks were defined: 
VVCAS, VSCAS, SVCAS, and SSCAS.   The GPX search engine starts with construc-
tion of a collection sub-tree using inverted lists of term posting.  The SVCAS, VSCAS, 
and SSCAS variants require some strict structural interpretation of a result filter, the 
support filter/s, or both, respectively.  The VVCAS variant requires loose structural 
interpretation of all filters.   

To enforce structural constraints, filtering of result or support elements is per-
formed on the final results.  But for all the CAS variants, including VVCAS, inverted 
lists are filtered with the structural constraint of the about clause when the term post-
ing lists are accessed.  This is a very important distinction between CO and CAS.  
Even though CAS processing may apply vague interpretation to structural constraints, 
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we still start the search only with those nodes that comply with the structural con-
straint.  The constraints are lifted only when result nodes are selected for return.  This 
is best explained by the following example.  Consider the query - 

//A[about(//B,C)] 

The path filter //A//B is always applied to elements that contain the term C.  The 
about clause structural constraint //A//B is taken as a strong clue for retrieval and so 
we only look inside elements that are on a path //A//B.  However strict result elements 
for this query must comply with the path //A.  Here we can interpret the constraint 
vaguely and return any element type that we may deem appropriate.  For instance, we 
may return a section where a paragraph was specified.   

In our implementation in 2005 our vague structural constraint interpretation was to 
ignore the structural constraint altogether.  This may not have been the wisest choice, 
and our CAS results were not quite as good as the CO/COS results. 

Following the initial filtering all CAS variants are processed identically as de-
scribed in the previous section .   All CAS variants at INEX2005 were processed as 
Thorough runs meaning that all relevant XML elements were returned, ignoring over-
lap.  This is supported naturally by the system because the collection sub-tree that the 
search engine constructs contains the entire recall base – as identified by the system.  
Results are extracted, sorted, and the top N results returned. 

7   Treatment of CO Variants 

The CO and COS tasks were designed to study queries having structural constraints, 
in comparison with the same queries without such constraints. The CO and COS que-
ries were used to generate results for three different user models – Thorough, Fo-
cused, and Fetch Browse. Thorough retrieval is a system oriented task that requires 
the complete recall base (or rather, the top N ranked results). Focused retrieval is a 
user oriented task and requires the return of elements of just the right granularity, and 
without overlap (supporting fast browsing through most relevant results in no particu-
lar order). Fetch Browse retrieval is a user oriented task that requires the return of 
ranked documents and the complete ranked recall base within those documents (sup-
porting a user browsing in document rank order with identified relevant components). 

The CO and COS queries only differ in the complexity of the NEXI expression, 
where a CO query can be expressed as a search over the entire article element.  There-
fore our system did not treat CO topic any differently to COS topics.   

CO.Thorough retrieval was performed as for the CAS tasks and requires no further 
discussion.  The Focused retrieval task and Fetch-Browse retrieval task started with 
the Thorough results recall base (i.e. The complete Thorough  results tree.) 

In Focused retrieval mode the system extracted from each path, leading from arti-
cle to leaf, the highest ranking node. In this manner the resulting set of candidate  
results contained no overlap. The results were then sorted by element score. This ap-
proach matches the notion of having a “best element on a path” which Focused  
retrieval evaluation is closely related to. 

In Fetch Browse retrieval we sorted the result by article score and then by element 
score within, as required for this task. Section 5 describes how an element's score is 
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derived, and that of course applies to article nodes too. The article score is not necessar-
ily correlated with the highest scoring leaf nodes; rather, it is higher for articles that con-
tain many scoring elements. For Fetch Browse retrieval this article scoring approach is a 
good match with the user model that is measured by Fetch-Browse Element metric.  

The only significant free parameters in all the retrieval runs were the score propa-
gation decay constants in the construction of the thorough recall base for CAS vari-
ants and for CO.Thorough. The Focused and Fetch-Browse result sets were generated 
in a straight forward manner by filtering and sorting the Thorough results. We did 
experiment with various cut-off levels for stop words – we found no significant drop 
in recall-precision when we dropped all terms that occurred less frequently than 
75,000 times in the collection. However, this is not a general result and will of course 
depend on the collection on hand and the search terms – quite clearly it is possible for 
all search terms to be highly frequent. 

8   Results 

The results that the system was able to achieve were rather good in all tasks.   In this 
section we describe the results for each of the tasks. The official nxCG MAep score is 
used to report system performance over all topics. The specific details of the nxCG 
metric can be found in [8] and elsewhere in this publication and we skip the discus-
sion of the details.  

We summarized all the results in Tables 2 and 3.  We recorded the overall rank of 
the best submission from QUT in each of the tasks in which it had participated.  We 
also recorded in parenthesis the QUT position when we only consider the best sub-
mission from each participant.   

The values that were obtained for nxCG@10, nxCG@25, and nxCG@50 were also 
pleasing, and in many instances the QUT submission was ranked 1st.  The full set of 
 

Table 2. System rank summary (Focused, Thorough, XXCAS) 

Task Strict

MAep

Gen

MAep

GenLifted

Maep

CO Focused 4  (2) 2  (2) 1  (1)

CO Thorough 5  (3) 7  (4) 4  (3)

COS Focused 1  (1) 1  (1) 1  (1)

COS Thorough 3  (2) 1  (1) 2  (2)

VVCAS 5  (3) 8  (5) 5  (3)

VSCAS 3  (2) 3  (2) 3  (2)

SVCAS 7  (4) 8  (5) 8  (5)

SSCAS 10 (7) 7  ()4 8  (5)
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official figures is included elsewhere in this publication and the reader is invited to 
inspect the performance of the QUT submission in the respective tables. 

Table 3 contains a summary of overall performance in the Fetch-Browse task. Here 
the performance is good across the tasks, with the only exception being the CO Fetch-
Browse Article measure. The reason for this difference lies in the metric. The Fetch-
Browse Article metric measures the ability of a system to pick the articles with the 
highest scoring elements. This requires a different article ordering strategy to that 
which we used. Our strategy was to order articles by overall scores of elements within 
rather than by the best scoring elements.  We conjecture that even in this task it would 
be possible to improve the score of our system with a change to the strategy – all our 
submissions were sorted by article score, however, the metric rewards articles with 
higher scoring elements more than articles with more scoring elements.  By sorting 
with more emphasis on higher scoring elements it would be possible to push articles 
with higher scoring elements up the ranked list. We did not test this conjecture and it 
is left for future work. 

Table 3. System rank summary (Fetch-Browse) 

Task Strict

MAep

Gen

MAep

GenLifted

Maep

COS Fetch-Browse

Element

(overlap on)

1  (1) 1  (1) 1  (1)

COS Fetch-Browse

Element

(overlap off)

1 (1) 1 (1) 1  (1)

COS Fetch-Browse

Article

(overlap off & on)

5  (3) 4  (3) 6  (4)

CO Fetch-Browse

Element

(overlap on)

9  (5) 3 (3) 2  (2)

CO Fetch-Browse

Element

(overlap off)

3  (3) 2  (2) 1  (1)

CO Fetch-Browse

Article

(overlap off & on)

22 (10) 16  (7) 15  (6)

 

The results of the CO and COS runs are of particular interest because they allow us 
to judge the effectiveness of the structural constraints in retrieval.  We found that in all 
metrics and all tasks our COS runs always scored better in MAep values than the CO 
runs. It should be noted however that with the strict metric at low recall (below 0.05, or 
75 elements) the CO runs seem to perform equally well and sometimes even better 
than the COS runs.  This is an interesting finding because in applications where users 
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are not interested in browsing past the first couple screens there seems to be little if any 
benefit in using structural constraints – at least with our system and with the collection 
on hand.  This result cannot be taken as indicative in the general case without more 
extensive and rigorous testing over a more diverse document collections. 

9   High Precision vs High Recall 

It became clear in our experiments, before INEX 2005 (with 2004 data), and after, 
that retrieval for high precision and retrieval for high recall, require completely differ-
ent system setting – at least with GPX.  We were able to obtain much higher precision 
at lower recall than in the official INEX submissions,  but at the cost of lower MAep 
values.  To demonstrate this we compare a run designed for high precision with our 
best official retrieval run in the COS.Focussed task (ranked 3rd, 1st, 2nd overall respec-
tively, with strict, gen, genLifted metrics). We produced new results with the same 
system, but we chose to reduce D(n) in equation 2 to 0.01 in order to maximize the 
number of scoring leaves at the top of the list.  This is not a good strategy for high 
MAep values, but we get more highly scoring elements up front.  Unfortunately this 
also pushes up the rank many irrelevant elements.  In the Thorough retrieval strategy 
this means that we get significantly less overlap and the MAep is usually lower. 
Figures 2,3,4 depict the ep-gr plots for the two submissions, the best of the QUT offi-
cial runs and the unofficial high-precision run, with all 3 metrics. 

The improvement is most dramatic in the case of the strict quantization.  In this case 
the MAep of the high precision run is 0.034 while that of the official run is 0.026.  
With the gen and genLifted quatization the high precision run is more precise up to 
about 75-90 results, but after that it drops sharply and the MAep is 0.079 for the gen 
quantization – lower than the official run at 0.096, and the MAep for the genLifted run 
is 0.059 – lower than the official run at 0.069.  So it is clear that in order to succeed at 
both high-precision and high-recall is is necessary to use different parameter settings. 
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Fig. 2. High precision retrieval, strict quantization  
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Fig. 3. High precision retrieval, gen quantization  
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Fig. 4. High precision retrieval, genLifted quantization  

The goals may well be competing and there is a trade-off.  It would be useful to sepa-
rate and study the high-precision task from the high-recall task.  Users who never want 
to browse past the first couple of result pages would prefer the high precision results, 
while users who look for a needle in a hay stack may well be prepared to sift through 
long and more exhaustive lists, even if at the cost of lower precision up front. 

10   Discussion 

The MAep results that we were able to obtain are very pleasing for two main rea-
sons: we have used a single system that was built to exploit the natural structure and 
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properties of the XML tree. The system is robust and performed well on all tasks 
and with all official metrics.  

In the Focused retrieval task it became clear from both qualitative analysis and 
from experimentation with 2004 data, that it would be advantageous to select ele-
ments slightly higher in the tree than the leaves – on account of increased exhaustivity 
– but not too high since specificity tends to drop.  We could control the bias towards 
the leaves or the internal nodes by increasing or decreasing the decay factor for score 
propagation (equation 2).  By choosing smaller values for D(n)we were able to in-
crease the relative scores of leaf elements.  In the Thorough submission on the other 
hand, by increasing the value of D(n) we were able to extract more scoring elements 
from the ancestors of highly scoring leaf elements. 

While the system performs well in retrieval, there are a few issues that still need 
addressing.  The INEX collection is inverted in about 2 hours on Pentium 4 PC, 
1.8GHz clock, 1GB RAM.  This is not particularly slow, and in fact most participants 
do not  even report the indexing times (not since 2002). Since INEX 2005 we were 
able to reduce the indexing time to 45 minutes, by porting the software from C# to 
Java, and moving the database from MS Access to an industrial strength DBMS 
(Derby), but the program is still process bound rather than I/O bound. It would proba-
bly be possible to reduce the indexing time further, by moving to lower level pro-
gramming, by index compression, and by avoiding the DBMS altogether, but the wis-
dom of doing that is questionable given the extensibility features and industrial accep-
tance of the DBMS mature technology. 

Retrieval speed is perhaps not quite satisfactory.  Evaluation of all 40 CO queries 
took just under 20 minutes.  With the move to a more advanced DBMS we were able 
to reduce that since INEX 2005 to about 7 minutes, but even that is a bit slow for in-
dustrial strength applications with real time response.  It might be interesting to study 
in the context of INEX how efficient systems are by comparison.  Perhaps a task with 
a restricted response time (say, under 3 seconds) is worthwhile studying. 

11   Conclusion 

We have presented an approach to XML retrieval that is based on a fully inverted file 
structure and the construction of an exhaustive XML subtree – representing an exten-
sive recall base (approximating the full recall base), from which we derive results for 
the various ad-hoc tasks in a straight forward manner.  We implemented the Xpath 
inverted file system system with a conventional database back end (MS Access) and 
have used simple, yet very effective heuristic algorithms to compute relevance scores 
of individual nodes.  The contribution to this year's INEX evaluation was in adjusting 
the system to handle the new tasks (FetchBrowse and Focused) and evaluating the 
system against the new tasks and topics.  We have used the natural structure of the 
XML tree to compute scores for all nodes in the recall base.  The system performed 
very well in all tasks, very often ranked 1st, 2nd, or 3rd, and rarely ranked outside the 
top 10 by the official nxCG MAep measure.  The system shows consistently good 
performance across a wide range of tasks and with very few, minimal, and intuitive 
free parameters that can drive it towards High-Recall or High-Precision, towards 
Thorough, or towards Focused retrieval, with Strict or with Vague interpretation of 



 GPX – Gardens Point XML IR at INEX 2005 253 

structural constraints.  We further demonstrated that, at least with the GPX system, it 
is possible to obtain higher precision at low recall points, or trade off precision at low 
recall points for higher overall recall.  
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Abstract. This paper describes an XML information retrieval system
that we have developed. It is based on a vector space model, and imple-
mented on top of XRel, a relational XML database system that has been
developed in our research group. When a query is processed, a large num-
ber of fragments are retrieved, because a single XML document usually
contains many XML fragments. Keeping all XML fragments degrades
retrieval precision and increases query processing time, because some
XML fragments are not appropriate as a query target. In existing meth-
ods, retrieval targets are manually selected by human experts when an
XML collection is stored in the system. Such manual selection is not fea-
sible when many kinds of XML documents are stored in the system. To
cope with the problem we propose a method for automatically selecting
document-centric fragments by introducing three measurements, namely,
period ratio, number of different words, and empirical rules. By delet-
ing inappropriate data-centric fragments from results of keyword query,
we can improve the accuracy and performance of our system. Through
performance evaluations, we confirmed the improvement of retrieval pre-
cision and query processing speed.
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1 Introduction

XML (Extensible Markup Language) is a standard markup language to describe
the structure and semantics of documents and data. There are two kinds of
XML documents. One is data-centric XML documents, such as supply chain
management data and scientific experiment data. The other is document-centric
XML documents, such as scientific publications and web data. When query-
ing data-centric XML documents, XML query languages, such as XPath and
XQuery, are considered to be appropriate in the sense that the intended query
results can be specifically specified by users. On the other hand, when we think
about document-centric XML documents, application of information retrieval
(IR) techniques is considered to be more appropriate, because query results can
be chosen in terms of users’ criteria, such as similarity.

In this study, we develop an IR-system for the CO sub task on top of rela-
tional XML database. Specifically, we try to enhance our XML database system,
XRel [4], by integrating a keyword-retrieval function. XRel retrieves XML doc-
uments using off-the-shelf relational database systems. We introduce a novel
mechanism for storing word-vectors in XRel. It enables the system to rank the
results according to the similarity between the query and the vectors.

An important observation is that an XML document may consist of several
portions that have different characteristics. More precisely, portions that have
relatively regular structure and contain non-numerical values as well as short
text, and portions that have relatively irregular structure and mainly contain
text. The former is called “data-centric fragments,” and the latter “document-
centric fragments.” For example, fragments, such as title and author can be
considered as data-centric fragments. On the other hand, fragments, such as
chapters, sections and paragraph, are considered to be document-centric
fragments.

When XML documents are retrieved, large amount of fragments are retrieved,
because a single XML document has many XML fragments. The conservation of
the vector elements of all XML fragments degrades retrieval precision and also in-
creases query processing time. In existing methods, document-centric fragments
that is appropriate for retrieval targets are manually determined, and the cost of
establishing systems is very high. Therefore, in this paper, we propose a method
for selecting document-centric fragments by deleting data-centric fragments that
are not appropriate for retrieval targets. In our method, appropriate XML frag-
ments for keyword search are automatically determined by the statistics of XML
fragments, simplifying the design of the XML document retrieval system. In our
previous method in INEX 2004 [7], we used only the number of different words
as statistics. In addition, we introduce period ratio and empirical rules. Based on
our INEX 2004 paper, in that we described how to implement XRel, we imple-
ment XRel and period ratio, number of different words, and empirical rules. In
our INEX 2004 paper, we described how to implement XRel. In this paper, we
imeplement XRel and evaluate the performances in terms of retrieval precision
and query processing speed.
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The rest of this paper is organized as follows. Section 2 describes related
work. We explain our XML information retrieval system based on a vector space
model in Section 3, and the method of selecting document-centric fragments in
Section 4. Section 5 shows an example of applying and evalating the method.
Section 6 concludes this paper and discusses future work.

2 Related Work

As described in Section 1, there are two types of XML documents: document-
centric and data-centric. In the retrieval of XML documents, data-centric XML
documents were targeted at first, and retrieval by database approach using XML
query languages such as XQuery [2] and XPath [3] was a main focus. However,
as document-centric XML documents advance, XML fragments cannot be effec-
tively retrieved by a database approach. In such a background, the application of
information retrieval technology, especially by using keywords, is required to re-
trieve XML fragments. An XML document retrieval that applies such technology
has been studied [7].

Hayashi et al. [8] considered that a ranking function that is based on document
structure and content was important. By generating indices after setting the
XML fragments as retrieval targets, they retrieved XML documents by weighted
keywords with structural information. Amer-Yahia et al. added an information
retrieval function to XQuery, an XML query language being standardized now,
and proposed TeXQuery [9] and FlexPath [10] that efficiently retrieves XML
documents.

3 XML Information Retrieval System

In this section, we explain an XML document retrieval system based on a vector
space model and its implementation.

3.1 XRel

In XRel, XML documents are stored into four relations that have fixed relational
schemas. The relational schemas are independent of the logical structure of doc-
uments. Therefore, changes in the logical structure do not affect the relational
schemas. Each element in XML documents is managed by labels and paths from
the root node to the node.

When querying XML documents using keywords, keywords are translated
into SQLs based on the relational schemas. An outline of the query processing
interface of the XRel architecture is shown in Figure 1. The management of XML
documents in relational databases is hidden from users and applications. When
a query is issued by a user or an application, it is automatically translated into
the corresponding SQL in the system.

The following schemas are defined to store XML documents into a relational
database:
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Fig. 1. Outline of query processing interface of XRel architecture

Element (documentID, nodeID, pathID, start, end)
key is (documentID, nodeID)

Attribute (documentID, nodeID, pathID, start, end, value)
key is (documentID, nodeID)

Text (documentID, nodeID, pathID, start, end, value)
key is (documentID, nodeID)

Path (pathID, pathexp)
key is (pathID)

“Element,” “Attribute,” “Text,” and “Path” are relations to store element nodes,
attribute nodes, text nodes, and all paths from the root node to a node in
XML documents, respectively. The following describes the attributes of the above
schemas:

documentID Identifier to identify XML documents
nodeID Serial number to identify each node
pathID Identifier to identify paths in XML documents
sibling Sibling Dewey Order assigned to nodes
start Byte position of start tags
end Byte position of end tags
value Attribute value in Attribute relation, and

content of element node in Text relation
pathexp Path expressions appearing in all XML documents

We give an example of storing an XML document into relations. Figure 3 shows
the tree structure of the XML document shown in Figure 2. The relations storing
the XML documents shown in Figure 3 are shown in Table 1.
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Fig. 2. An XML document

Fig. 3. An XML tree structure

Table 1. Storing XML document

Element
documentID nodeID pathID start end

1 1 1 1 47
1 3 3 15 28
1 4 3 31 44

Path
pathID pathexp

1 #/a
2 #/a#/@b
3 #/a#/c

Attribute
documentID nodeID pathID start end value

1 2 2 4 11 Attr

Text
documentID nodeID pathID start end value

1 3 3 18 23 Text 1
1 4 3 34 39 Text 2

3.2 Implementation of Vector Space Model Based on XRel

XRel retrieves XML documents by keywords by implementing a vector space
model based on relational databases. The following schema is defined to store
each document vector of XML fragments in relational databases.

Token(documentID, nodeID, token, tfipf)
key is (documentID, nodeID, token)
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“Token” has the following four attributes:

documentID Identifier to identify XML documents
nodeID Serial number to identifiy each node
token Each token appearing in XML fragments
tfipf The weight of token

Only nonzero vector element is stored

TF-IPF, used as token weight, is the product of TF (Term Frequency) and
IPF (Inverse Path Frequency) [5]. IPF is the criterion for token specificity that
takes document structure into consideration. IDF (Inverse Document Frequency)
which is widely used in IR domain, expresses term specificity in a document set.
IPF expresses term specificity in a set of XML fragments that have identical
paths. Let Np denote the total number of XML fragments on a path p, and let
dfp(t) denote the number of XML fragments that has the token t on the path p.
IPF is calculated by the following expression:

ipfp(t) = log
Np

dfp(t)
+ 1.

3.3 Query Translation

In this section, we explain query translation. Queried keywords “keyword 1,
keyword 2, ..., keyword n” are translated into the following SQL.

SELECT * FROM (
SELECT t.documentID, t.nodeID, e.start, e,end, SUM(t.tfipf) score
FROM Token t, Element e
WHERE t.documentID = e.documentID
AND t.nodeID = e.nodeID
AND t.token in (’keyword 1’, ’keyword 2’, ..., ’keyword n’)
GROUP BY t.documentID, t.nodeID, e.start, e.end ) r

ORDER BY r.score DESC

4 Method of Selecting Document-Centric Fragments

When retrieving XML documents, the number of XML fragments is enormous.
Such an enormous amount of data degrades retrieval precision and increases
query processing time. To cope with this problem, we introduce a method that

The summationof theTF-IPF values of “keyword1,keyword 2,...,keyword n”
is calculated in each XML fragment, and XML fragments are then ranked by
using the summation of TF-IPF. The similarity between a query vector and a
vector of an XML fragment is calculated by the inner product of two vectors.
The summation of TF-IPF is the inner product of the query vector and the
vectors of XML fragments. The query vector follows a boolean model.
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automatically determines appropriate fragments for the answers of keyword
search from the statistics of fragments.

In structured documents, each fragment has either a data-centric or document-
centric property. For example, in academic papers, titles and author fragments
are data-centric. On the other hand, chapters, sections, and paragraph fragments
are document-centric. Keyword retrieval is effective for retrieving document-
centric fragments. So, only document-centric fragments are appropriate for key-
word search.

We describe a method for selecting, from the full set of XML fragments, a
set of fragments that should be considered as retrieval targets. The selection is
realized by deleting the fragments that are considered inappropriate as retrieval
targets (hereinafter ”unnecessary fragments”). The selection is based on the
statistics of the fragments. Deletion is executed in the following three steps:

1. Deleting unnecessary fragments by period ratio at the schema level.
2. Deleting unnecessary fragments by the number of different words at the

instance level.
3. Deleting unnecessary fragments by empirical rules.

Deleting unnecessary fragments is expected to improve data size, query process-
ing speed, and retrieval precision. The details of each step are as follows.

4.1 Deletion by Period Ratio

Generally speaking, texts end with “.”, “?”, or “!”, so XML fragments that
end with “.”, “?”, or “!” are assessed as document-centric fragments. However,
some document-centric fragments do not end with “.”, “?”, or “!”, and some
data-centric fragments do end with “.”, “?”, or “!” at the instance level. So for
each fragment set that has the same tag name, if the fragment set a has high
probability of ending with “.”, “?”, or “!”, the fragments that belong to the set
are labeled document-centric.

Let Dt denote the number of fragments whose tag names are t. For leaf node
t, let Nt denote the number of fragments that end with “.”, “?”, or “!”, if t is
an internal node, the number of fragments that have more than one document-
centric leaf node. Period ratio is calculated as follows:

rt =
Nt

Dt
.

Fragment sets that have low period ratio are data-centric, and thus they are
deleted from retrieval targets. Concretely speaking, the corresponding rows are
deleted from the “Element” and “Token” tables. The threshold for deletion is
determined from the statistics of the fragment set.

4.2 Deletion by Number of Different Words

Some data-centric fragments remain in the fragment set even after filtering by
period ratio, especially fragments that have a middle period ratio. So each frag-
ment is judged whether it is data-centric at the instance level.



A High-Speed and High-Precision XML Information Retrieval System 261

To this end, the number of different words that each fragment includes is used.
Fragment sets that have a low number of different words are assessed as data-
centric fragments, so they are deleted as retrieval targets. Concretely speaking,
the corresponding rows are deleted from the “Element” and “Token” tables. The
threshold for deletion is determined from the statistics of the fragment set.

4.3 Deletion by Empirical Rules

After the above processing, document-centric fragments remain mainly. However,
some document-centric fragments are still inappropriate for retrieval targets. For
example, if an item of a table has sentences, the item is a data-centric fragment.
However, the item is inappropriate for retrieval result presentation. The table
should present with the sentences that mention the table.

Then such document-centric fragments are deleted by empirical rules. The
concept of stop word in the information retrieval domain was extended to the
concept of ‘stop path’. Such paths are deleted from the “Path” table, the frag-
ments on the paths are deleted from the “Element” table, and the tokens that
belong to the fragments are deleted from the “Token” table.

5 Experiments

This section describes examples of applying the method to the INEX test
collection.

5.1 Application of Method to INEX-1.9

This section describes applications of the method to the INEX-1.9 test collection.
The method includes three steps of deletion: by period ratio, by number of
different words, and by empirical rules.

Executing Deletion by Period Ratio. We calculated the period ratio of the
INEX-1.9 test collection. Figure 4 shows the transition of the period ratio of
each fragment in decreasing period-ratio order. Each point in the plot shows a
single fragment and its period ratio.

The fragments in Figure 4 were divided into three groups. The first was
document-centric fragments whose period ratio is from 0.8 to 1. The second
was data-centric fragments whose period ratio is from 0 to 0.2. The third was
intermediate fragments whose period ratio is from 0.2 to 0.8.

Document-centric and intermediate fragments were kept, and data-centric
fragments were deleted. The threshold of the period ratio for deletion was 0.21.
The number of fragments decreased from about 16 million to about 4.4 million
by applying this method.

Executing Deletion by Number of Different Words. We calculated the
number of different words of fragments that escaped deletion by period ratio.
Figure 5 shows the relation between the number of different words and the
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Fig. 4. Transition of period ratio

Fig. 5. Relation between number of different words and fragments that have the same
number of different words
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number of fragments that have the same number of different words. Each point
in the plot shows a single fragment and its number of different words.

The fragments in Figure 5 were divided into three groups. The first was the
large majority of fragments that have a few different words. The second was a
small number of fragments that have many different words.

The large majority of fragments that have a few different words was deleted.
The threshold of the number of different words for deletion was 30. The number
of fragments decreased from about 4.4 million to about 0.85 million by applying
this method.

Executing Deletion by an Empirical Rule. In the fragment set, from which
data-centric ones were deleted by period ratio and the number of different words,
we performed deletion of the fragments of tables, figures, and mathematical
expressions and its descendants. The number of fragments decreased from about
0.85 million to about 0.84 million by applying this method. The number of
fragments decreased from about 16 million to about 0.84 million by executing
the above three steps.

5.2 Performance Evaluation

We evaluate the effectiveness of the proposed method in terms of retrieval pre-
cision and query processing speed. In this experiment, we used INEX-1.9 for
the test collection and CO.Thorough sub task for performance evaluation. The
experimental setup was as follows. CPU: Intel Xeon 3.8 GHz (Dual); Memory:
4096 MB; OS: Asianux 1.0; DBMS: Oracle 10g Release 1.

Evaluation of Retrieval Precision. We compared the full fragment set with
the reduced fragment set in terms of retrieval precision for the top 1500 results
of XML fragments. We use PR-Generalized of EvalJ metrics. Figure 6 shows the
comparison of retrieval precision.

We can observe the retention of large numbers of inappropariate fragments
for keyword search targets degrade retrieval precision. On the other hand, the
retrieval precision of the reduced fragment set improves, especially at low recall
levels. It proves that the appropriate fragments for keyword search target are
selected by applying our method.

Evaluation of Query Processing Time. We compared the full fragment set
with the reduced fragment set in terms of query processing time. Clustered index
is created on “token” attribute of “Token” table. Figure 7 shows the comparison
of the elapsed time of the topic 202 to the topic 221. Figure 8 shows the compar-
ison of the elapsed time of the topic 222 to the topic 241. The average elapsed
time of the full fragment set is about 171 seconds, while the average elapsed time
of the reduced fragment set is about 17.1 seconds.

Query processing time for the reduced fragment set was shorter than the time
for the full fragment set in all 40 CO queries. Query processing time has been
improved up to about sixty times. We confirmed that decreasing of retrieval-
targeted fragments made query processing more efficient.
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Fig. 6. Comparisons of retrieval precision

Fig. 7. Comparison of elapsed time of the topic 202 to the topic 221

Deletion Ratio. The above experiments confirm that this method is effective
for the improvement of retrieval precision and query processing speed. However,
some answer fragments might be deleted by this method. We counted the num-
ber of deleted fragments included in all answer fragments and calculated the
ratio of deleted fragments in all answer fragments. We call it the deletion ratio.
Deletion ratio D is calculated as follows:
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Fig. 8. Comparison of elapsed time of the topic 222 to the topic 241

Table 2. Deletion Ratio

Exhaustivity
Document ID 2 1 2&1

202 0.000 0.214 0.077
203 0.000 0.144 0.140
205 N/A 0.215 0.215
206 0.133 0.347 0.262
207 0.600 0.326 0.441
208 0.070 0.199 0.185
209 0.000 0.053 0.048
210 0.047 0.171 0.153
212 0.000 0.813 0.705
213 0.000 0.262 0.234
216 0.060 0.129 0.109
217 0.000 0.048 0.037
218 0.000 0.253 0.252
219 0.000 0.132 0.121
221 0.049 0.316 0.186

Exhaustivity
Document ID 2 1 2&1

222 0.450 0.154 0.284
223 0.094 0.080 0.084
227 0.022 0.067 0.059
228 0.000 0.340 0.328
229 0.000 0.078 0.067
230 0.091 0.036 0.048
232 0.744 0.450 0.575
233 0.150 0.231 0.196
234 0.224 0.718 0.483
235 0.090 0.199 0.160
236 0.029 0.278 0.263
237 0.010 0.269 0.246
239 0.105 0.042 0.050
241 0.339 0.278 0.324

Total 0.215 0.348 0.314

D =
deleted answer fragments

all answer fragments
.

Table 2 shows the deletion ratio of INEX-1.9. We find many fragments whose
exhaustivity is 2 are deleted especially in the topics 207, 222, 232, 233, and 241.
In these documents, the exhausitivity of data-centric fragments, such as italic
and item of list is 2. In our method, we considered that such fragments are not
exhaustive and should be deleted from retrieval targets.
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6 Conclusion and Future Work

In this paper, we described the implementation of an XML information retrieval
system and a method of selecting appropriate fragments for keyword search
targets. We proposed a method of selecting appropriate fragments for retrieval
target by the statistics of XML fragments. We confirmed the improvement of
retrieval precision and query processing speed by using the proposed method.

Future work is as follows.

– Developing a weighting scheme that proactively introduces the information
of XML documents to improve of retrieval precision.

In this paper, TF-IPF is used as a weighting method. TF values are nor-
malized by document size. Hence, the TF value of the tokens in data-centric
fragments becomes high. A weighting method that proactively introduces
the information of XML documents is needed to solve this problem.

– Developing a ranking method and an efficient query processing method when
queries from users include paths in XML documents.

In this paper, we supposed a case where users do not have the knowl-
edge about document structure. In this case, we can assume queries are
given by keywords. So, data-centric fragments were deleted from retrieval
target by taking the features of keyword search into consideration. However,
some data-centric fragments are used as selection conditions. The XPath
query “/article[title=”A Study on XML Document Retrieval and its Ap-
plication System”]” is such an example. When selection conditions include
paths, a ranking method and an efficient query processing method need to
be developed.
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Abstract. This paper describes the current state of our system for structured re-
trieval. The system itself is based on an extension of the vector space model ini-
tially proposed by Fox [5]. The basic functions are performed using the Smart 
experimental retrieval system [10]. The major advance in our system this year is 
the incorporation of a facility for the dynamic retrieval of elements, which we 
refer to as flexible retrieval. This approach allows the system to return a rank-
ordered list of elements based on a single indexing of the collection at the para-
graph level. Lnu term weights [12,13] are generated dynamically along with the 
elements themselves, thus eliminating the need for propagation. Experimental 
results using this technique on INEX 2006 data show that it can produce results 
competitive with those produced by retrieval on an all-element index of the col-
lection (and in fact produces virtually identical results for the new Fetch-and-
Browse task). Early relevance feedback results are also reported. 

1   Introduction 

Our goal when we began our work with INEX in 2002 was to assess the utility of Sal-
ton’s vector space model [11] in its extended form for XML retrieval. Familiarity 
with Smart [10] and faith in its capabilities led us to believe that this approach was 
promising if particular problems such as flexible retrieval (i.e., retrieval of elements at 
the desired degree of granularity) and ranking issues could be resolved. During the 
past year, our research has centered on an approach for the dynamic retrieval of ele-
ments which we believe provides a viable solution to both these problems. 

For those interested in the background and evolution of our system, discussions are 
available in our earlier workshop papers [1-3]. This paper focuses on our method of 
flexible retrieval, which is performed dynamically at retrieval time. It returns a rank-
ordered list of elements to the user. An overview of results with respect to INEX 2005 
tasks is presented, comparing dynamic element retrieval with retrieval against an all 
all-element index of the collection. In particular, the two methods produce virtually 
identical results under both ep/gr and ep/gr-a when applied to the INEX Fetch-and-
Browse task. 

Our method of flexible retrieval is based on a single indexing of the collection at 
the paragraph level. (Collection statistics as required for Lnu-ltu term weighting are 
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also used, but these are available from an examination of the collection as a whole 
and once calculated can be applied to any collection with similar characteristics.) It 
uses an extension of the basic vector space model proposed by Fox [5] to represent 
the various components of the structured document. This extension allows the incor-
poration of objective identifiers such as author name and date of publication with con-
tent identifiers in the representation of the document. Similarity between extended 
vectors is calculated as a linear combination of the similarities of the corresponding 
subvectors.  

Flexible retrieval in this system takes place after an initial retrieval. Given a query 
and a paragraph indexing of the collection, we retrieve a rank-ordered list of para-
graphs. Paragraphs that correlate highly with the query are used to identify documents 
of interest to the query (i.e., those containing potentially relevant elements). Once 
such a document is identified, a bottom-up representation of the document tree is gen-
erated. Lnu term weights are generated for the element vectors at each level in the 
tree. The element vectors are correlated with the ltu-weighted query vector used for 
the initial retrieval and a rank-ordered list of elements is produced.  

Before formulating our 2005 experiments, we first experimented with 2004 data 
(where relevance judgments were available) by using both extended vector and body-
only retrieval and comparing the results to those produced by corresponding retrievals 
against an all-element indexing of the collection. Subvector weighting was also exam-
ined. Experiments on the 2004 INEX data set indicated that extended vector retrieval 
substantially outperformed body-only retrieval, so our 2005 results are based on ex-
tended vector retrieval using the same subvector weights. Although we participated in 
a number of the 2005 tasks, our interest centers on CO processing (with respect to 
both the Thorough and Focused tasks) and Fetch-and-Browse. Another interest is how 
flexible retrieval performs with respect to what may reasonably be considered an up-
per bound on performance, i.e., retrieval against the all element index.  

In INEX 2005 we are using, for the first time, a system which retrieves elements 
dynamically in an effective manner and then returns a rank-ordered list to the user. 
Experimental results demonstrate the successful utilization of this approach for struc-
tured retrieval. 

2   Background 

This section presents a brief overview of the models and term weighting method upon 
which our system is based—i.e., the vector space model, the extended vector space 
model, and Lnu-ltu term weighting (which is particularly applicable to element  
retrieval). 

A basic model in information retrieval is the vector space model [11], wherein 
documents and queries are represented as weighted term vectors. The weight assigned 
to a term is indicative of the contribution of that term to the meaning of the document. 
The similarity between vectors (e.g., document and query) is represented by the 
mathematical similarity of the corresponding term vectors. 

In 1983, Fox [5] proposed an extension of the vector space model—the extended 
vector space model—to allow for the incorporation of objective identifiers with con-
tent identifiers in the representation of a document. An extended vector can include 
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different classes of information about a document, such as author name, date of publi-
cation, etc., along with content terms. In this model, a document vector consists of a 
set of subvectors, where each subvector represents a different class of information. 
Our current representation of an XML document/query consists of 18 subvectors (abs, 
ack, article_au_fnm, article_au_snm, atl, au_aff, bdy, bibl_atl, bibl_au_fnm, 
bibl_au_snm,, bibl_ti, ed_aff, ed_intro, kwd, pub_yr, reviewer_name, ti, vt) as defined 
in INEX guidelines. These subvectors represent the major properties of the document 
or article—those most likely to be of interest with respect to retrieval. Of the 18, eight 
are subjective, that is, contain content-bearing terms: abs, ack, atl, bdy, bibl_atl, 
bibl_ti, ed_intro, kwd (abstract, acknowledgements, article title, body, title of article 
cited in the bibliography, title of publication containing this article [i.e., journal title], 
editorial introduction, and keywords, respectively). Similarity between extended vec-
tors is calculated as a linear combination of the similarities of the corresponding sub-
jective subvectors. (The objective subvectors are currently used in our system only as 
filters on the result set returned by CAS queries. That is, when a ranked set of ele-
ments is retrieved in response to a query, the objective subvectors are used as filters to 
guarantee that only elements meeting the specified criteria are returned to the user.) 

Use of the extended vector model for document retrieval normally raises the ques-
tion of how to select coefficients for combining subvector similarities. This requires 
some experimentation. Early (2003 and 2004) experiments identified the following 
subjective subvectors as being useful for retrieval: abs, atl, bdy, bibl_atl, kwd. Similar 
experiments examined subvector weighting. Parameters producing the best results 
were applied to our 2005 experiments. (See Section 4 for more detail.) 

 Another issue of interest is the weighting of terms within subjective subvectors. 
Earlier experiments indicated that the best results were achieved with respect to both 
article and paragraph indexings when Lnu.ltu term weighting [13] was used. Our 2005 
results are based on the use of Lnu term weighting for the elements. Lnu term weights 
are defined below: 

))__log(1())_log(1( frequencytermaveragefrequencyterm +÷+  

_______________________________________________________ 

))__(()1( pivottermsuniquenumberslopeslope ÷×+−  

where tf represents term frequency, slope is an empirically determined constant, and 
pivot is the average number of unique terms per document, calculated across the en-
tire collection. 

3   System Description 

Our system handles the processing of XML text as follows: 

3.1   Parsing 

The documents are parsed using a simple XML parser available on the web.  
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3.2   Translation to Extended Vector Format 

The documents and queries are translated into Smart format and indexed by Smart 
as extended vectors. We selected the paragraph as our basic indexing unit in the 
early stages. Thus a typical vector in this system (based on our paragraph index-
ing) consists of a set of subjective and objective subvectors with a paragraph in the 
bdy subvector. (Other indexing units were later added to include section titles, ta-
bles, figure captions, abstracts, and lists.) Lnu term weighting is applied to all  
subjective subvectors. 

3.3   Initial Retrieval 

Retrieval takes place by running the topics against the paragraph indexing of the col-
lection using Smart. The topics used in the initial retrieval may be simple (i.e., body-
only) or extended vector queries. A simple query consists of search terms distributed 
only in the bdy subvector, whereas in the extended vector case the search terms are 
distributed across the subjective subvectors. In either case, the result is a list of ele-
ments (paragraphs) ordered by decreasing similarity to the query. Consider all the 
elements in this list with a non-zero correlation with the query. Each such element 
represents a terminal node (e.g., paragraph) in the body of a document with some rela-
tionship to the query.  

3.4   Flexible Retrieval 

A basic requirement of INEX retrieval is that the system must return components of 
documents or elements (i.e., abstract, paragraphs, sub-sections, sections, bodies, arti-
cles, figure titles, section titles, and introductory paragraphs) to the user rather than 
just the document itself. The object is to return the most relevant [highly exhaustive 
and specific] element(s) in response to a query. A good flexible system should return 
a mixture of document components (elements) to the user. These elements should be 
returned in rank order. The method to determine rank should incorporate both exhaus-
tivity and specificity. 

Our flexible retrieval module, Flex, is designed as follows. It takes as input a list of 
elements (i.e., paragraphs), rank-ordered by similarity to the query as determined by 
Smart in the initial retrieval stage. Each such element represents a leaf of a tree; each 
tree represents an article in the document collection.  

Consider Figure 1, which represents the tree structure of a typical XML article. 
The root of the tree is the article itself, whereas the leaf nodes are the paragraphs. 
Flexible retrieval should return relevant document components (e.g., <sec>, <ss1>, 
<ss2>, <p>, <bdy>, <article>) as shown in Figure 1. In order to determine which ele-
ments of a tree to return, the system must (1) build the tree, and (2) assign a value to 
each non-terminal node in the tree by correlating the query with that element. (The 
value in this case represents a function of exhaustivity and specificity.) Elements are 
then returned to the user in rank order. 

 



272 C.J. Crouch et al. 

Fig. 1. Tree Structure of a Typical XML Document 

Flex takes a bottom-up approach. All leaf elements having non-zero correlations 
with query Q have already been assigned similarity values by Smart. Consider the set 
of n (say 1000) top-ranked elements associated with Q. Trees are constructed for all 
articles with leaves in this set. To construct a tree, information about its structure and 
its terminal nodes must be known. Information about the structure of the tree is avail-
able as a by-product of the initial parsing of the documents. Information about its ter-
minal nodes is found in the paragraph indexing of the collection. 

 The process is straight-forward. Suppose for example in Figure 1 that p1, p2, and p7 
were retrieved as leaf elements of the same tree. Flex would then build the tree repre-
sented in Figure 1. Each leaf is represented by a term-frequency weighted vector. 
Each element vector (parent) is generated by merging the terms which appear in its 
children and updating the frequency of each term. This process continues until the 
body element (bdy) is generated. (See [7] for details.) 

A significant problem in element retrieval is the return of a rank-ordered list. Often 
this problem is dealt with by propagating weights from one level of the tree to an-
other. It is difficult to know how to do this well. Our approach allows us to generate 
element term weights directly. Lnu term weights for a particular element vector are 
based on information available within the vector itself along with collection-
dependent values of slope and pivot. The method is designed to account for differ-
ences in the length of vectors by reducing the difference between the probability of 
relevance and the probability of retrieval. Details of Lnu-ltu term weighting can be 
found in [12,13]; suffice it to say that once values of slope and pivot are determined at 
the element level, each element can be Lnu-weighted and correlated with the ltu-
weighted query to produce a rank value for the element. 

One problem remains with this approach. Consider the formula for the ltu term 
weighting of the query, given below.  
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This formula is dependent on both N (the collection size) and nk (the number of ele-
ments that contain the term). This information is not available in the local environ-
ment. N can be estimated but nk is generally available only through an element index-
ing of the collection. Our conjecture was that using the original, ltu-weighted query 
(the one used in the initial Smart retrieval to collect the paragraphs) and correlating it 
with the Lnu-weighted element vectors would produce a rank-ordered list of elements 
superior to any ranking we could produce through weight propagation and accurate 
enough to produce useful results. (More recent efforts are directed at producing values 
for these parameters [nk in particular] reflective of the element environment, but the 
results reported in this paper are based on use of the original, ltu-weighted query.) 

For each query, after a rank-ordered list of elements is produced for each tree, the 
lists are merged, and the top 1500 are reported for INEX evaluation.  

4   Experiments 

In the following sections, we describe the experiments performed with respect to the 
ad-hoc task (CO, Fetch and Browse and CAS processing) and the relevance feedback 
task. In all cases, we use only the topic title as search words in query construction. 
Term weighting is Lnu.ltu (using the paragraph ltu-weighted query as described above 
for Flex operations); the similarity measure used is inner product. All indexing is 
done only at the paragraph (basic indexing unit) level unless otherwise specified.  

Parameters of particular interest with respect to extended vector retrieval are the 
values assigned to each of the subvectors during the retrieval process (i.e., the subvec-
tor weights). Based on earlier experiments [7], subvector weights of 0 were applied to 
all subvectors with the exception of the three which were found to be of particular  
interest with respect to retrieval, namely, bdy (the body subvector, representing a 
paragraph, subsection, section, or body element), atl (the article title), and abs (the 
abstract). Based again on [7], subvector weights of 3, 2, and 1, respectively, were as-
signed to these subvectors. The parameter of most interest with respect to flexible re-
trieval is n, the number of paragraphs input to Flex. The value of n is set to 1000 for 
all runs. 

4.1   Using CO Topics 

Our 2005 CO experiments are designed to examine the performance of two different 
approaches to element retrieval. Our primary interest this year lies in determining how 
our flexible retrieval method—dynamic element retrieval—compares to a correspond-
ing retrieval against an all-element index of the collection. In 2004 [3], we ran ex-
periments to determine whether extended vector or body-only retrieval produced the 
better result. Since extended vector retrieval always produced a better result, all of our 
2005 runs are based on the use of extended vectors. In this paper, we compare the re-
sults of [extended vector] flexible retrieval to those produced by [extended vector] 
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conventional retrieval against an all-element index of the collection. We also examine 
flexible retrieval results wherein small elements—i.e., elements with sizes ranging 
from 10 to 50 terms—are filtered or removed from consideration in the retrieval proc-
ess. Results indicate little noticeable improvement resulting from this process but 
scores are reported. 

Experimental runs for the CO task consist of the following: Three basic runs were 
produced for every subtask—flexible retrieval, flexible retrieval with small elements 
removed (filtered paragraphs), and retrieval on the all-element index. The CO sub-
tasks (Thorough, Focused, and Fetch-and-Browse [strict, generalized]) are reported 
for the official metrics (nXCG and ep/gr) and also under inex-eval for Thorough as a 
general indicator of relative performance over the window of 1500. Detailed informa-
tion is shown in Tables 1-4; a more global view is given by the corresponding figures 
which appear in the Appendix.  

The CO Thorough subtask aims at returning all relevant elements, whereas the Fo-
cused subtask seeks to return only the most relevant element along a path. These sub-
tasks are implemented in our runs as indicated above via either flexible retrieval or a 
search of the all-element index. A brief overview of the new Fetch-and-Browse sub-
task is in order here. This task is implemented by performing two independent 
searches of the document collection. One is a normal retrieval against an article index 
of the collection, which produces a rank-ordered set of documents (set 1). The other is 
either a flexible retrieval on the paragraph index (for the Flex runs) or a retrieval on 
the all-element index to produce a set of rank-ordered elements (set 2). In Fetch-and-
Browse, we take the first document in set 1 and collect in order from set 2 the  
elements which belong to this document. We then continue this process until 1500 
elements are collected and reported. 

As can be seen from Table 1, our all-element results were quite good in the early 
stages, falling into the average range at rank 100. Under inex-eval (as seen in  
Table 2), the all-element results were excellent, with strict better than generalized. 
(Further analysis is needed to examine the differences produced by the metrics.)  
 

Table 1. CO Thorough results (nXCG and ep/gr) 

  All-element Flex Flex_Par_Filtered 

Metric Strict Generalized Strict Generalized Strict Generalized 

nXCG P R P R P R P R P R P R 

@1 0.039 10/55 0.267 14/55 0.039 10/55 0.289 7/55 0.039 10/55 0.289 7/55 

@5 0.046 9/55 0.264 11/55 0.031 20/55 0.213 25/55 0.031 20/55 0.213 25/55 

@10 0.075 6/55 0.280 3/55 0.023 36/55 0.201 27/55 0.023 36/55 0.202 26/55 

@25 0.085 9/55 0.239 10/55 0.041 30/55 0.193 31/55 0.041 30/55 0.194 29/55 

@50 0.103 11/25 0.223 16/55 0.058 34/55 0.190 27/55 0.057 34/55 0.191 28/55 

@100 0.111 25/55 0.202 21/55 0.063 37/55 0.174 32/55 0.063 38/55 0.172 33/55 

@500 0.218 29/55 0.219 26/55 0.200 31/55 0.214 30/55 0.195 32/55 0.211 31/55 

@1500 0.338 26/55 0.325 21/55 0.271 31/55 0.323 23/55 0.267 33/55 0.325 22/55 

ep/gr 0.025 9/55 0.059 22/55 0.022 15/55 0.060 19/55 0.022 16/55 0.061 21/55 
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Table 2. CO Thorough results (inex-eval) 

  All-element Flex Flex_Par_Filtered 

Metric Strict Generalized Strict Generalized Strict Generalized 

inex 
eval

P R P R P R P R P R P R 

@1 0.148 3/55 0.336 15/55 0.148 3/55 0.371 7/55 0.148 3/55 0.371 7/55 

@5 0.104 3/55 0.331 7/55 0.067 22/55 0.264 23/55 0.067 22/55 0.264 23/55 

@10 0.111 2/55 0.332 3/55 0.048 35/55 0.240 25/55 0.048 35/55 0.240 25/55 

@20 0.081 2/55 0.270 9/55 0.054 29/55 0.216 27/55 0.054 29/55 0.216 28/55 

@100 0.053 1/55 0.176 12/55 0.037 21/55 0.152 28/55 0.037 22/55 0.150 31/55 

@200 0.040 1/55 0.138 13/55 0.033 9/55 0.125 24/55 0.033 11/55 0.124 26/55 

@1500 0.011 10/55 0.050 11/55 0.010 16/55 0.049 13/55 0.010 18/55 0.048 16/55 
 

Table 3. CO Focused results (nXCG and ep/gr) 

  All-element Flex Flex_Par_Filtered 

Metric Strict Generalized Strict Generalized Strict Generalized 

nXCG P R P R P R P R P R P R 

@1 0.077 8/44 0.209 23/44 0.000 29/44 0.151 31/44 0.000 29/44 0.151 31/44 

@5 0.063 11/44 0.185 20/44 0.023 26/44 0.143 33/44 0.023 26/44 0.143 33/44 

@10 0.058 15/44 0.163 25/44 0.023 31/44 0.156 28/44 0.023 31/44 0.156 27/44 

@25 0.077 14/44 0.153 23/44 0.026 33/44 0.142 25/44 0.026 33/44 0.145 24/44 

@50 0.090 19/44 0.154 22/44 0.029 32/44 0.129 26/44 0.029 32/44 0.132 24/44 

@100 0.121 17/44 0.172 21/44 0.053 31/44 0.117 30/44 0.053 31/44 0.120 29/44 

@500 0.204 16/44 0.270 17/44 0.066 34/44 0.150 32/44 0.074 33/44 0.155 31/44 

@1500 0.310 10/44 0.367 12/44 0.070 34/44 0.158 32/44 0.086 33/44 0.170 31/44 

ep/gr 0.022 15/44 0.066 19/44 0.049 26/44 0.049 26/44 0.005 34/44 0.050 25/44 
 

Table 4. CO Fetch-and-Browse results (ep/gr and ep/gr-a) 

  All-element Flex Flex_Par_Filtered 

Met-
ric

Strict Generalized Strict Generalized Strict Generalized 

ep/gr 0.003 11/63 0.044 11/63 0.002 15/63 0.040 14/63 0.002 16/63 0.048 9/63 

ep/gr-a 0.107 3/63 0.190 21/63 0.110 2/63 0.178 23/63 0.110 4/63 0.185 22/63 
 

Focused results (Table 3) are not as good. Fetch-and-Browse results were fairly good 
under ep/gr, falling just out of the top 10 for the all-element results, which were fol-
lowed closely by the Flex runs (Table 4). Our ep/gr-a (strict) results were excellent for 
both the flexible and the all-element runs. (In fact, virtually identical Fetch-and-
Browse results were produced by the all-element and flexible methods.)  
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4.2   Using CAS Topics 

We process CAS topics in much the same fashion as CO topics, with some important 
exceptions. During pre-processing of the CAS queries, the subjective and objective 
portions of the query and the element to be returned (e.g., abstract, section, paragraph) 
are identified.  

Depending on its syntax, a CAS query can be divided into parts, which can be 
divided into subparts depending on the number of search fields. CAS preprocess-
ing splits the query into the required number of parts, each of which is processed 
as a separate Smart query. For example, suppose the query specifies that a search 
term is to be searched for in field 1. If the field to be searched is an objective sub-
vector, the search term is distributed in that subvector. If the search field specifies 
a specific subjective subvector, the search term is distributed in that subvector. 
Otherwise the search takes place in the paragraph subvector. The result in this last 
case is a set of elements returned by the Smart search which is used as input to 
Flex. Flex produces a ranked set of elements as the final output of this small 
search. After all subsearches associated with the query are complete, the final re-
sult set is produced (i.e., the original query is resolved). A ranking procedure,  
dependent upon the type of subtask, is applied. Lastly, a filter is applied to the ele-
ment set, so that the SVCAS and SSCAS subtasks return only the type of elements 
sought. See [4] for more details.  

As Tables 5 and 6 show, other than VSCAS in early ranks, our CAS results are at 
best undistinguished. The cause may lie in our post-processing element ranking pro-
cedure, which is applied to the sets of elements retrieved by the individual child que-
ries, along with our current method of element ranking. (All of these runs exhibit no 
overlap.) More analysis is needed with respect to these results. 

Table 5. SCAS and SVCAS results (nXCG and ep/gr) 

  SSCAS SVCAS 

Metric Strict Generalized Strict Generalized 

nXCG P R P R P R P R 

@1 0.000 8/25 0.045 17/25 0.000 7/23 0.172 7/23 

@5 0.050 19/25 0.163 18/25 0.000 16/23 0.207 8/23 

@10 0.100 18/25 0.165 19/25 0.040 18/23 0.171 11/23 

@25 0.092 18/25 0.140 19/25 0.072 18/23 0.187 11/23 

@50 0.116 18/25 0.132 20/25 0.100 11/23 0.218 12/23 

@100 0.120 20/25 0.128 20/25 0.113 14/23 0.258 12/23 

@500 0.394 17/25 0.262 21/25 0.456 13/23 0.483 11/23 

@1500 0.432 17/25 0.277 21/25 0.525 14/23 0.514 12/23 

ep/gr 0.006 22/25 0.033 22/25 0.016 8/23 0.069 12/23 
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Table 6. VSCAS and VVCAS results (nXCG and ep/gr) 

  VSCAS VVCAS 

Metric Strict Generalized Strict Generalized 

nXCG P R P R P R P R 

@1 0.167 2/24 0.355 1/24 0.000 8/28 0.301 9/28 

@5 0.033 12/24 0.262 7/24 0.000 22/28 0.205 19/28 

@10 0.067 11/24 0.264 8/24 0.011 21/28 0.202 18/28 

@25 0.800 9/24 0.203 13/24 0.031 20/28 0.208 17/28 

@50 0.100 9/24 0.183 13/24 0.038 20/28 0.188 16/28 

@100 0.088 13/24 0.154 14/24 0.430 22/28 0.183 13/28 

@500 0.161 13/24 0.149 13/24 0.172 16/28 0.247 10/28 

@1500 0.272 13/24 0.201 13/24 0.427 8/28 0.359 12/28 

ep/gr 0.005 15/24 0.032 14/24 0.005 15/28 0.054 13/28 

4.3   2005 Ad-Hoc Results 

Our initial approach to flexible retrieval [3] used a primitive ranking scheme which 
favored the return of smaller elements. Yet as Kamps, et. al. [6] show, in 2003 the 
probability of relevance increased with element length. Our current method of flexible 
retrieval produces a much more diverse element set. When applying our current ver-
sion of Flex to the 2004 INEX collection, we were able to produce a better result in 
terms of average precision than that achieved by retrieval against the all-element in-
dex [7]. With the 2005 collection, Flex produces virtually identical results for Fetch-
and-Browse and generally lower results for the other CO subtasks. A more accurate 
ranking produced by a more accurate weighting of the query vectors at the element 
level will reduce the discrepancy. (That is, the ranking of elements can certainly be 
improved by a more accurate weighting of the query vector at the element level.) 
However, given the very large index required, the redundancy within it, and the inef-
ficiencies of storage and search time associated with all-element retrieval, we con-
clude that flexible retrieval, which produces a result dynamically based on a single 
index, is preferred if it can produce even a comparable result. 

4.4   Relevance Feedback in INEX 

The importance of relevance feedback in conventional information retrieval has long 
been recognized. Incorporating relevance feedback techniques within the domain of 
structured retrieval is an interesting challenge.  

Working within the constraints of our system, the first question which arises is how 
to translate the exhaustivity and specificity values associated with each INEX element 
into an appropriate measure of relevance in our system. Conventional retrieval views 
relevance assessment as binary. In INEX, we have a range of values for exhaustivity 
and a corresponding set of values for specificity. There are many possibilities to con-
sider when mapping these values to relevance. These early experiments recognize as 
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relevant those elements with positive values of e and are based on an initial retrieval 
against the all-element index of the collection.  

Evaluation is given for CO topics in terms of P@20 (precision after the retrieval of 
20 elements) performed on the residual collection. The number of terms used for ex-
pansion of the query, n, varies from 25 to 500, as seen. The number of elements  
assessed for relevance is 20. We have used Rocchio’s algorithm [9], with α and β 
ranging from 1 to 5, respectively, and γ set to 0. A subset of the results are shown in  
Table 7. 

Table 7 shows that the best results are obtained for this data set when α= 4, β = 1 
and n = 300, which produces a 20 percent improvement in P@20 over the base case. 
This result is very similar to that produced when the same experiment was run on the 
2004 data set, which produced a best case improvement of 18 percent at α= 3, β = 1 
and n = 500 [8]. These results indicate that it is possible to improve retrieval results 
substantially using relevance feedback at the element level. (Overlap is not considered 
in these results.) 

Table 7. Relevance feedback results: P@20 for CO topics vs. base case (0.4034) 

  n 

α β 25 50 100 300 500 

0.4155 0.4379 0.4431 0.4362 0.4397 
3 4 

3.0% 8.6% 9.8% 8.1% 9.0% 

0.4155 0.4362 0.4480 0.4362 0.4397 
3 5 

3.0% 8.1% 11.1% 8.1% 9.0% 

0.4276 0.4517 0.4672 0.4862 0.4776 
4 1 

6.0% 12.0% 15.8% 20.5% 18.4% 

0.4207 0.4328 0.4603 0.4500 0.4448 
4 3 

4.3% 7.3% 14.1% 11.6% 10.3% 

0.4155 0.4379 0.4431 0.4379 0.4379 
4 5 

3.0% 8.6% 9.8% 8.6% 8.6% 

5   Conclusions 

Our current system has achieved one important goal—it is able to retrieve elements 
dynamically and return a rank-ordered list of elements to the user in response to a 
query. It requires only a single indexing of the collection at the paragraph level rather 
than multiple indexings, which are expensive to produce and maintain. The term 
weights generated along with the elements are exact Lnu weights. The order in which 
the elements are returned to the user is an approximation—but we believe a good ap-
proximation—of that produced by an equivalent retrieval against the all-element in-
dex. Our current work in this regard centers on producing a better estimate of nk in the 
ltu weighting of query terms (as seen in the formula in Section 3.4). A value of nk that 
more closely reflects its value at each element level will produce a more accurate 



 The Dynamic Retrieval of XML Elements 279 

ranking of elements to return to the user—one more closely aligned with that pro-
duced by retrieval on the all-element index.  

Our efforts to date have centered on dynamically retrieving the most relevant set of 
elements associated with a query and ranking them appropriately. (That is., we have 
not attempted to modify the basic retrieval process so as to raise our scores/ranks un-
der various metrics). When we are satisfied that these goals have been achieved, we 
will consider ways in which the results may be improved.  
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Abstract. We participated with two different and independent search
engines in this year’s INEX round: The XXL Search Engine and the TopX
engine. As this is the first participation for TopX, this paper focuses on
the design principles, scoring, query evaluation and results of TopX. We
shortly discuss the results with XXL afterwards.

1 TopX – System Overview

Our query processing methods are based on precomputed index lists that are
sorted in descending order of appropriately defined scores for individual tag-
term content conditions, and our algorithmic rationale for top-k queries on
XML data follows that of the family of threshold algorithms (TA) [2, 4, 5]. In
order to find the top-k matches for multidimensional queries (e.g., with multiple
content and structure conditions), scoring, and ranking them, TopX scans all
relevant index lists in an interleaved manner. In each scan step, when the en-
gine sees the score for a data item in one list, it combines this score with scores
for the same data item previously seen in other index lists into a global score
using a monotonic aggregation function such as weighted summation. We per-
form in-memory structural joins for content-and-structure (CAS) queries using
pre-/postorder labels between whole element blocks for each query condition
grouped by their document ids.

1.1 Top-k Query Processing for Semistructured Data

The query processor decomposes the query into content conditions, each of which
refers to exactly one tag-term pair, and into additional elementary tag condi-
tions (e.g., for navigation of branching path queries), plus the path conditions
that constrain the way how the matches for the tag-term pairs and elementary
tag conditions have to be connected. For NEXI, we concentrate on content con-
ditions that refer to the descendant axis, i.e., the full-text contents of elements.
This way, each term is connected to its last preceding tag in the location path,
in order to merge each tag-term pair into a single query condition with a cor-
responding list in the precomputed inverted index. Note that sequential reads
are performed for these content-related tag-term-pairs, only, whereas additional
structural query conditions for element paths or branching path queries are per-
formed through a few judiciously scheduled random lookups on a separate, more
compact element table.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 282–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The rationale for these distinctions is that random accesses to disk resident
index structure are typically one or two orders of magnitude more expensive than
sorted accesses. Note that an index list (e.g., for a single term) on a large data
collection may be very long, in the order of megabytes (i.e., multiple disk tracks),
and the total index size may easily exceed a several Gigabytes so that only
the “hottest” fragments (i.e., prefixes of frequently needed lists) can be cached
in memory. Sorted access benefits from sequential disk I/O with asynchronous
prefetching and high locality in the processor’s cache hierarchy; so it has much
lower amortized costs than random access. Threshold algorithms with eager
random accesses look up the scores for a data item in all query-relevant index
lists, when they first see the data item in one list. Thus, they can immediately
compute the global score of the item, and need to keep only the current top-k
items with their scores in memory. Algorithms with a focus on sorted access do
not eagerly look up all candidates’ global scores and therefore need to maintain
a candidate pool in memory, where each candidate is a partially evaluated data
item d that has been seen in at least one list and may qualify for the final top-k
result based on the following information (we denote the score of data item d
in the i-th index list by s(ti, d), and we assume for simplicity that the score
aggregation is summation):

– the set E(d) of evaluated lists where d has already been seen,
– the worstscore(d) :=

∑
i∈E(d) s(ti, d) based on the known scores s(ti, d), and

– the bestscore(d) := worstscore(d)+
∑

i/∈E(d) highi that d could possibly still
achieve based on worstscore(d) and the upper bounds highi for the scores
in the yet unvisited parts of the index lists.

The algorithm terminates when the worstscore(d) of the rank-k in the current
top-k result, coined min-k, is at least as high as the highest bestscore(d) among
all remaining candidates.

1.2 Periodic Queue Maintenance and Early Candidate Pruning

All intermediate candidates that are of potential relevance for the final top-
k results are collected in a hash structure (the cache) in main memory; this
data structure has the full information about elements, worstscores, bestscores,
etc. In addition, two priority queues merely containing pointers to these cache
entries are maintained in memory and periodically updated. The top-k queue
uses worstscores as priorities to organize the current top-k documents, and the
candidate queue uses bestscores as priorities to maintain the stopping condition
for threshold termination.

Results from [11] show that only a small fraction of the top candidates actually
has to be kept in the candidate queue to provide a proper threshold for algorithm
termination. Since TopX typically stops before having scanned all the relevant
index lists completely, much less candidates than the ones that occur in the
inverted lists for a query have to be kept in the cache. Both queues contain
disjoint subsets of items currently in the cache. If an item’s bestscore(d) drops
below the current min-k threshold, it is dropped from the candidate queue as
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well as from the cache. The queue is implemented using a Fibonacci heap, with
efficient amortized lookups and maintenance.

Optionally, TopX also supports various tunable probabilistic extensions to
schedule random accesses for testing both content-related and structural query
conditions as well as a probabilistic form of candidate pruning, thus yielding
approximate top-k results with great run time gains compared to the conser-
vative top-k baseline and probabilistic guarantees for the result quality [11].
However, for the current INEX experiments these probabilistic extensions were
not employed, because here the focus is clearly on retrieval robustness rather
than cutting edge performance.

2 Data and Scoring Model

2.1 Full-Content Indexing

We consider a simplified XML data model, where idref/XLink/XPointer links
are disregarded. Thus every document forms a tree of nodes, each with a tag
and a related content. We treat attributes nodes as children of the corresponding
element node. The content of a node is either a text string or it is empty; typically
(but not necessarily) non-leaf nodes have empty content.

<article
id=“conference/vldb05/theobald”>

<title>
An efficient and versatile
engine for TopX Search.

</title>
<abs>

We present a novel engine, 
coined TopX, for ranked 
retrieval of XML documents.

</abs>
<sec st=“Introduction”>

<par>
Non-schematic XML data…

</par>
</sec>
<sec st=“Related Work”>

<par>
Efficient evaluation of XML 
path conditions…

</par>

</sec>
</article>

Fig. 1. An XML example

With each node, we can addi-
tionally associate its full-content
which is defined as the concate-
nation of the text contents of all
the node’s descendants. Option-
ally, we may apply standard IR
techniques such as stemming and
stop word removal to those text
contents. This way, we conceptu-
ally treat each element as an eligi-
ble retrieval unit (i.e., in the classic
IR notion of a document) with its
expanded full-content text nodes
as content, with no benchmark-
specific tuning or preselection of
commonly retrieved tags or the use
of predefined retrieval units being
necessary. In the following we fo-
cus on the descendant axis (i.e.,
the full-content case) as the much
more important case for XML IR
with vague search, thus following
the NEXI specification; the case
for the child axis follows analogously.

Figure 1 depicts an XML example snippet and Figure 2 illustrates our logical
view of that document, with expanded full-content text nodes for each element.
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For example, the full term frequency (ftf) of the term xml for the root element
article has a value of 3 which reflects that the whole article element is definitely
relevant for a query containing the term xml, however, it might be less compact
than a more specific section or paragraph which should be taken into account
by the scoring model.

articlearticle

titletitle absabs secsec

“conference vldb 05 theobald efficient versatile engine topx search 
present novel engine coin topx rank retrieve xml document 

introduction non schema xml data relate work efficient evaluation xml 
path condition“

“present novel engine
coin topx rank retrieve

xml document“

stst parpar

1 10

3 2 4 3 5 6

6 4 7 5

ftf(“xml”,article1 ) = 3ftf(“xml”,article1 ) = 3

idid
2 1

“efficient versatile
engine topx search“

“introduction“ “non schema 
xml data“

“conference vldb
05 theobald“

“relate work“ “efficient evaluation 
xml path condition”

“introduction
non schema 
xml data“

“relate work 
efficient
evaluation xml 
path condition“

secsec

stst parpar

8 9

9 7 10 8

Fig. 2. Redundant full-content text nodes for elements

2.2 Content Scores

TopX provides the option to evaluate queries either in conjunctive mode or in
“andish” mode. In the first case, all terms and structural conditions must be
met by a result candidate, but still different matches yield different scores. In
the second case, a node matches a content condition of the form //"t1 t2 . . ." if
its content contains at least one occurrence of at least one of the terms t1, t2, etc.
It matches the full-content condition .//"t1 t2 ..." if its full-content contains
at least one occurrence of at least one of the search terms. In the first case, the
significance (e.g., derived from frequencies and element-specific corpus statistics)
of a matched term influences the score and the final ranking, but – similarly to
boolean XPath – documents (or subtrees) that do not contain a specified term
at all or that do not strictly match all structural query conditions are dismissed.

For content scores we make use of element-specific statistics that view the
content or full-content of each element node n with tag A as a bag of words:

1) the term frequency, tf(t, n), of term t in node n, which is the number of
occurrences of t in the content of n;

2) the full-content term frequency, ftf(t, n), of term t in node n, which is the
number of occurrences of t in the full-content of n;
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3) the tag frequency, NA, of tag A, which is the number of nodes with tag A in
the entire corpus;

4) the element frequency, efA(t), of term t with regard to tag A, which is the
number of nodes with tag A that contain t in their full-contents in the entire
corpus.

Now consider a content condition of the form A//"t1 . . . tm", where A is a tag
name and t1 through tm are terms that should occur in the full-contents of a
subtree. Our scoring of node n with regard to condition A//"t1 ...tm" uses
formulas of the following type:

score(n, A//”t1 . . . tm”) :=
∑m

i=1 relevancei · specificityi

compactness(n)
,

where relevancei reflects ftf values, specificityi is derived from NA and efA(ti)
values, and compactness(n) considers the subtree or element size for length nor-
malization. Note that specificity is made XML-specific by considering combined
tag-term frequency statistics rather than global term statistics only. It serves
to assign different weights to the individual tag-term pairs which is a common
technique from probabilistic IR.

Tag N avg(length) k1 b
article 16,808 2,903 10.5 0.75

sec 96,481 413 10.5 0.75
p 1,022,679 32 10.5 0.75
fig 109,230 13 10.5 0.75

Table 1. Element-specific parameterization of
the extended BM25 model

An important lesson from text
IR is that the influence of the
term frequency and element fre-
quency values should be sublin-
early dampened to avoid a bias
for short elements with a high
term frequency of a few rare
terms. Likewise, the instantiation
of compactness in the above for-
mula should also use a dampened
form of element size. Highly skewed score distributions would be beneficial for
candidate pruning (and fast algorithm termination), but typically at a high ex-
pense in retrieval quality. To address these considerations, we have adopted the
popular and empirically usually much superior Okapi BM25 scoring model (orig-
inating in probabilistic IR for text documents [6]) to our XML setting, leading
to the following scoring function:

score(n, A//”t1 . . . tm”) :=
m∑

i=1

(k1 + 1) · ftf(ti, n)
K + ftf(ti, n)

· log
(

NA − efA(ti) + 0.5
efA(ti) + 0.5

)

with
K = k1

(
(1 − b) + b

length(n)
avg{length(n′) | n′ with tag A}

)
.

The BM25 formula provides a dampened influence of the ftf and ef parts, as
well as a compactness normalization that takes the average compactness of each
element type into account. A simple hill-climbing-style parameter optimization
using the 2004 INEX collection and relevance assessments yields a maximum in
the MAP value for k1 being set to 10.5, whereas the b parameter is confirmed to
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perform best at the default value of 0.75 provided in the literature. With regard
to individual (element-specific) retrieval robustness, the above formula would
also allow for a more elaborated parameter optimization for individual element
types which was not considered for the current setup.

2.3 Structural Scores

For efficient testing of structural conditions we transitively expand all structural
query dependencies. For example, in the query //A//B//C[.// "t"] an element
with tag C (and content term "t") has to be a descendant of both A and B
elements. Branching path expressions can be expressed analogously. This way,
the query forms a directed acyclic graph (DAG) with tag-term conditions as
leafs, elementary tag conditions as interconnecting nodes between elements of
a CAS query, and all transitively expanded descendant relations as edges. This
transitive expansion of structural constraints is a key for efficient path validation
and allows an incremental testing of path satisfiability. If C in the above example
is not a valid descendant of A, we may safely prune the candidate document from
the priority queue, if its bestscore(d) falls below the current min-k threshold
without ever looking up the B condition.

In non-conjunctive (aka. “andish”) retrieval, a result document (or subtree)
should still satisfy most structural constraints, but we may tolerate that some tag
names or path conditions are not matched. This is useful when queries are posed
without much information about the possible and typical tags and paths or for
vague content and structure (VCAS) search, where the structural constraints
merely provide a hint on how the actual text contents should be connected.
Our scoring model essentially counts the number of structural conditions (or
connected tags) that are still to be satisfied by a result candidate d and assigns
a small and constant score mass c for every condition that is matched. This
structural score mass is combined with the content scores and aggregated with
each candidate’s [worstscore(d), bestscore(d)] interval. In our setup we have
set c = 1, whereas content scores were normalized to [0, 1], i.e., we emphasize
the structural query conditions. Note that it is still important to identify non-
satisfiable structural conditions as early and efficiently as possible, because this
can reduce the bestscore(d) of a result candidate and make it eligible for pruning.

The overall score of a document or subtree for a content-and-structure (CAS)
query is the sum of its content and structural scores. For content-only (CO)
queries, i.e., mere keyword queries, the document score is the sum, over all
terms, of the maximum per-term element scores within the same target element.

If TopX is configured to return entire documents as query results (e.g., for
the CO/S-Fetch&Browse task), the score of a document is the maximal score
of any subgraph matching a target element in the document; if otherwise the
result granularity is set to elements, we may obtain multiple results according to
the differently scored target elements in a document. The internal TopX query
processor completely abstracts from the original query syntax (NEXI or XPath)
and uses a full-fletched graph traversal to evaluate arbitrary query DAGs. Fur-
thermore, the top-k-style nature of the engine does not require candidates to
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be fully evaluated at all query conditions, but merely relies on [worstscore(d),
bestscore(d)] bounds to determine the current top-k results and the min-k thresh-
old for algorithm termination.

3 Database Schema and Indexing

3.1 Schema

Inverted index lists are stored as database tables; Figure 3 shows the corre-
sponding schema definitions with some example data for three tag-term pairs.
The current implementation uses Oracle 10g as a backbone, mainly for easy
maintenance of the required index structures, whereas the actual query process-
ing takes place outside the database exclusively in the TopX query engine, such
that the DBMS itself remains easily exchangeable. Nodes in XML documents
are identified by the combination of document id (did) and preorder (pre). Nav-
igation along all XPath axes is supported by both the pre and post attributes
using the XPath accelerator technique of [3]. Additionally, the level informa-
tion may stored to support the child-axis as well, but may be omitted for the
NEXI-style descendant constraints. The actual index lists are processed by the
top-k algorithm using two B+-tree indexes that are created on this base table:
one index for sorted access support in descending order of the (maxscore, did,
score) attributes for each tag-term pair and another index for random access
support using (did, tag, term) as key.

3.2 Inverted Block-Index

The base table contains the actual node contents indexed as one row per tag-
term pair per document, together with their local scores (referring either to the
simple content or the full-content scores) and their pre- and postorder numbers.
For each tag-term pair, we also provide the maximum score among all the rows
grouped by tag, term, and document id to extend the previous notion of single-
line sorted accesses to a notion of sorted block-scans. Then TopX scans each
list corresponding to the key (tag, term) in descending order of (maxscore, did,
score). Each sequential block scan prefetches all tag-term pairs for the same
document id in one shot and keeps them in memory for further processing which
we refer to as sorted block-scans. Random accesses to content-related scores for
a given document, tag, and term are performed through small range scans on
the respective B+ tree index using the triplet (did, tag, term) as key. Note
that grouping tag-term pairs by their document ids keeps the range of the pre-
/postorder-based in-memory structural joins small and efficient. All scores in the
database tables are precomputed when the index tables are built.

For search conditions of the form A[.//"t1 t2"] using the descendants axis,
we refer to the full-content scores, based on ftf(t1, A) and ftf(t2, A) values of
entire document subtrees; these are read off the precomputed base tables in a
single efficient sequential disk fetch for each document until the min-k threshold
condition is reached and the algorithm terminates. We fully precompute and
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Fig. 3. Inverted block-index with precomputed full-content scores over tag-term pairs

materialize this inverted block index to efficiently support the NEXI-style de-
scendant axis. With this specialized setup, parsing and indexing times for the
INEX collection are about 80 minutes on an average server machine including
the modified BM25 scoring model and the materialization of the inverted block-
index view.

We propagate, for every term t that occurs in a node n with tag A, its local tf
value “upwards” to all ancestors of n and compute the ftf values of these nodes
for t. Obviously, this may create a redundancy factor that can be as high as the
length of the path from n to the root. Thus, the redundant full-content indexing
introduces a factor of redundancy for the textual contents that approximately
corresponds to the average nesting depth of text nodes of documents in the
corpus; it is our intention to trade off a moderate increase in inexpensive disk
space (factor of 4-5 for INEX) for faster query response times. Note that by
using tag-term pairs for the inverted index lookups, we immediately benefit
from more selective, combined tag-term features and shorter index lists for the
actual textual contents, whereas the hypothetical combinatorial bound of #tags·
#terms rows is by far not reached.

3.3 Navigational Index

To efficiently process more complex queries, where not all content-related query
conditions can be directly connected to a single preceding tag, we need an ad-
ditional element-only directory to test the structural matches for tag sequences
or branching path queries.

Fig. 4. Navigational in-
dex for branching path
queries

Lookups to this additional, more compact and non-
redundant navigational index yield the basis for the
structural scores that a candidate may achieve for
each matched tag-only condition in addition to the
BM25-based content scores. As an illustration of the
query processing, consider the example twig query
//A[.//B[.//"b"] and .//C[.//"c"]]. A candidate
that contains valid matches for the two extracted tag-
term pairs B:b and C:c fetched through a series of block-
scans on the inverted lists for B:b and C:c, may only
obtain an additional static score mass c, if there is a
common A ancestor that satisfies both the content-related conditions based on
their already known pre-/postorder labels. Since all structural conditions are
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defined to yield this static score mass c, the navigational index is exclusively
accessed through random lookups by an additional B+ tree on this table. [10]
provides different approaches to judiciously schedule these random accesses for
the most promising candidates according to their already known content-related
scores.

3.4 Random Access Scheduling

The rationale of TopX is to postpone expensive random accesses as much as
possible and perform them only for the best top-k candidates. However, it can be
beneficial to test path conditions earlier, namely, in order to eliminate candidates
that might not satisfy the structural query conditions but have high worstscores
from their textual contents. Moreover, in the query model where a violated path
condition leads to a score penalty, positively testing a path condition increases
the worstscore(d) of a candidate, thus potentially improving the min-k threshold
and leading to increased pruning subsequently. In TopX we consider random
accesses at specific points only, namely, whenever the priority queue is rebuilt.
At this point, we consider each candidate and decide whether we should make
random accesses to test unresolved path conditions, or look up missing scores for
content conditions. For this scheduling decision, we have developed two different
strategies.

The first strategy, coined MinProbe, aims at a minimum number of random
accesses by probing structural conditions for the most promising candidates,
only. Since we do not perform any sorted scans for elementary tag conditions, we
treat structural conditions as expensive predicates in the sense of [1]. We schedule
random accesses only for those candidates d whose worstscore(d)+oj ·c > min-k,
where oj is the number of untested structural query conditions for d and c is a
static score mass that d earns with every satisfied structural condition.

This way, we schedule a whole batch of random lookups, if d has a sufficiently
high worstscore(d) to get promoted to the top-k when the structural conditions
can be satisfied as well. If otherwise bestscore(d) already drops below the current
min-k threshold after a random lookup, we may safely prune the candidate from
the queue. More sophisticated approaches may employ an analytic cost model,
coined the BenProbe strategy in [10], in order to determine whether it is cost
beneficial to explicitly lookup a candidate’s remaining score in the structural
and content-related query conditions.

4 Expensive Text Predicates

The use of auxiliary query hints in the form of expensive text predicates such as
phrases (“”), mandatory terms (+), and negation (-) can significantly improve
the retrieval results of an IR system. The challenge for a top-k based query pro-
cessor lies in the efficient implementation of these additional query constraints
and their adaptation into the sorted versus random access scheduling paradigm.
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4.1 Negation

The semantics of negations in a non-conjunctive, i.e. “andish”, query processor
is all but trivial. To cite the authors of the NEXI specification, “a user would be
surprised if she encountered the negated term among the retrieval results”. This
leaves some space for interpretation and most commonly leads to the conclusion
that the negated term should not occur in any of the top-ranked results; yet
we do not want to eliminate all elements containing one of the negated terms
completely, if they also contain good matches to other content-related query
conditions, and we would run into the danger of loosing substantial amount of
recall. Therefore the scoring of negated terms is defined to be independent of the
term’s actual content score. Similarly to the structural query constraints intro-
duced in the previous section, an element merely accumulates some additional
static score mass if it does not match the negated term. This quickly leads us
back to the notion of expensive predicates and the minimal probing approach. A
random lookup onto this element’s tag-term offsets is scheduled, if the element
gets promoted into the top-k results after a “successful” negation test, i.e., if it
does not contain the negated term among its full-content text and obtains the
static score for the unmatched negation. In the current setup, this static score
mass was set to the same value c = 1 that was provided for structural query
constraints.

4.2 Mandatory Terms

In contrast to term negations, the scores for mandatory query terms should still
reflect the relevance of the term for a given element, i.e., the precomputed BM25-
based content scores. Yet a too strict boolean interpretation of the + operator
would make us run into the danger of loosing recall at the lower ranks. We
therefore introduce boosting factors and a slightly modified score aggregation
of the form score(n, A//”t1 . . . tm”) =

∑m
i=1 βi + s(ti, A), where s(ti, A) is the

original content score, and βi is set to 1 if the term is marked as mandatory (+)
and 0 otherwise. Note that these βi are constants at query evaluation time, and
since the modified scores are taken into account for both the worstscore(d) and
bestscore(d) bounds of all candidates, the boosting factors “naturally” enforce
deeper sequential scans on the inverted index lists for the mandatory query con-
ditions, typically until the final top-ranked results are discovered in those lists.
Still weak matches for the remaining non-boosted query conditions may be com-
pensated by a result candidate through high-scored matches in the mandatory
query conditions.

4.3 Phrases and Phrase Negations

For phrase matching we store all term offsets in an auxiliary database table to-
gether with the pre-/postorder labels of each term’s occurrence in a document.
Again, phrases are interpreted as expensive predicates and tested by random
accesses to the offset table using the minimal probing approach already de-
scribed for the MinProbe scheduling. The only difference now is to determine
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whether a candidate element may aggregate the content-related score mass for
the phrase-related conditions into it’s overall worstscore(d) that is then used to
determine its position in the top-k results. In order to keep these score aggrega-
tions monotonous in the precomputed content scores, phrase lookups are treated
as binary filters, only. Similarly to the single-term negations, phrase negations
are defined to yield a static score mass c for each candidate element that does not
contain the negated phrase. Single-term occurrences of the negated phrase terms
are allowed, though, and do not contribute to the final element score unless they
are also contained in the remaining part of the query.

5 Experimental Results for TopX

5.1 CO-Thorough

For the CO-Thorough task, TopX ranks at position 22 for the nxCG[10] metric
using a strict quantization with a value of 0.0379 and at rank 30 of 55 submit-
ted runs for ep/gr with a MAep value of 0.018. We used the modified BM25
scoring model described above and also expensive text predicates to leverage
phrases, negations, and mandatory terms. The very modest rank in the sensitive
CO-Thorough task attests that there is still some space left for optimizations in
our scoring model for the CO queries, when there is no explicit target element
specified by the query (“//*”). However, there was neither any restriction given
on result overlap or result granularities, nor on the expected specificity or ex-
haustiveness of special element types such as sections or paragraphs, such that
the engine was allowed to return any type of element (also list items or even
whole articles) according to their aggregated content scores. An additional sim-
ple postprocessing step based on the element granularities and overlap removal
would already be expected to achieve great performance gains here. However,
for the old precision/recall metrics using inex eval with the strict quantization
(INEX ’04), the TopX run ranks at a significantly better position of rank 3 with
a MAP value of 0.0581, which actually corresponds to the particular metric and
setup for which we had been tuning the system.

5.2 COS-Fetch & Browse

The situation somewhat improves for the COS-Fetch&Browse task. Here, TopX
was configured to first rank the result documents according to their highest-
ranked target element and then return all target elements within the same re-
sult document, but mistakenly with the same, document-wide score instead of
the elements’ own scores. This bug practically rendered the element-level results
useless, while the article-level evaluation is relatively promising: The TopX run
without expensive predicates like phrases etc. ranks at position 10 out of 25 with
a MAep of 0.1455 in the ep-gr metric for the article ranking with strict quantiza-
tion. the run that exploits phrases, mandatory and negative terms was slightly
worse at rank 13 with a MAep of 0.1351 for the same setting. For both runs,
structure was evaluated according to a strict interpretation of the query target
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Fig. 5. nxCG results for the TopX CO-Thorough run

element given which exactly matches our full-content scoring model. Here, the
strict – XPath-like – interpretation of the query target element in combination
with our full-content scoring model that treats each target element itself as a
mini-document shows its benefits and naturally avoids overlap, since we return
exactly the element type that is specified in the query and therefore seem to
match the result granularity expected by a human user in a much better way.

5.3 SSCAS

Finally, the SSCAS task perfectly matches our strict interpretation of the target
element with the precomputed full-content scores and no overlap being allowed.
The two submitted TopX runs rank at position 1 and 2 out of 25 submitted
runs for both the strict nxCG[10] metric (with a value of 0.45 for both runs)
and the strict ep/gr metric (with MAep values of 0.1334 for the run that con-
siders expensive predicates and 0.1199 for the run without them). Although this
strict evaluation might be less challenging from an IR point-of-view, this task
offers most opportunities to improve the efficiency of a structure-aware retrieval
system, because the strict notion of all structural query components like target
and support elements drastically reduces the amount of result candidates per
document and, hence, across the corpus. Clever precomputation of the main
query building blocks, namely tag-term pairs with their full-content scores, and
index structures for efficient sorted and random access on whole element blocks
grouped by document ids allows for decent run times of a true graph-based query
engine that lies in the order of efficient text IR systems. Here, TopX can greatly
accelerate query run times and achieve interactive response times at a remark-
able result quality. Similar experiments provided in [10] yield average response
times for typical INEX (CO and CAS) queries in between 0.1 and 0.7 seconds for
the top 10-20 and still an average run time of about 20 seconds for the top 1,500
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results as demanded by INEX (which is of course not exactly nice to handle for
a top-k engine).

6 Experiments with XXL

The XXL Search Engine [7, 8, 9] was among the first XML search engines that
supported content-and-structure queries with an IR-like scoring for content con-
ditions. Focussing on aspects of semantic similarity conditions for tags and con-
tents using ontologies, it applies an out-of-the-box text retrieval engine, namely
Oracle’s text engine, to evaluate content subqueries. Details of its architecture
can be found in [8].

6.1 CO-Thorough

The CO.Thorough run basically represents the performance of the underlying
text search engine. XXL automatically converted CO topics into corresponding
Oracle text queries, using conjunctive combination of terms, enabling phrases,
and applying some other simple heuristics that gave reasonable results with
INEX 2003 and 2004. Surprisingly, this year’s performance was not really con-
vincing, with a rank 39 of 55 with inex eval and the strict quantization (MAP
0.016), with similar results for the other metrics.

6.2 SSCAS

The results for the SSCAS run, where XXL has a higher influence on the outcome
than with keyword-only topics, were much better. XXL is almost consistently
among the top 10 for nxCG with the generalized quantization, with a peak rank
of 2 for nxCG[25], and only slightly worse for strict quantization. For inex eval,
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we achieved rank 11 with a MAP of 0.075. XXL has been especially built for
this kind of strict structural match. The results are even better when taking the
poor performance of the content-only run into account.

6.3 SVCAS and VVCAS

For the SSCAS run, XXL was configured to return a result only if it had a
corresponding match (i.e., an element) for each subcondition of the query. For
the SVCAS run, we relaxed this requirement and allowed results as soon as
they had a match for the target subcondition, i.e., the subcondition whose re-
sult is returned as result of the query. This simple, ’andish’-like evaluation did
surprisingly well, with top-15 ranks in most metrics.

For the VVCAS run, we additionally changed the tag of the target subcon-
dition to the wildcard ’*’, accepting any element as result as long as it matches
the associated content condition. However, this kind of relaxation turned out to
be too coarse, so the results were quite poor with all metrics.
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Abstract. Our XML retrieval system EXTIRP was slightly modified
from the 2004 version for the INEX 2005 project. For the first time, the
system is now completely independent of the document type of the XML
documents in the collection, which justifies the use of the term “het-
erogeneous” when describing our methodology. Nevertheless, the 2005
version of EXTIRP is still an incomplete system that does not include
query expansion or dynamic determination of the answer size. The latter
is seen as a serious limitation because of the XCG-based metrics which
favour systems that can adjust the size of the answer according to its
relevance to the query. We put our main focus on the CO.Focussed task
of the adhoc track although runs were submitted for other tasks, as well.
Perhaps because of the incompleteness of our system, the initial results
bring out the characteristics of our system better than in earlier years.
Even when partially stripped, EXTIRP is capable of ranking the most
obvious highly relevant answers at the top ranks better than many other
systems. The relatively high precision at the top ranks is achieved at the
cost of losing the sight of the marginally relevant content, which shows
in some exceptionally steep curves, and the rankings among other sys-
tems that sink from the top ranks at low recall levels towards the bottom
ranks at higher levels of recall. Another fact supporting our observation
is that regardless of the metric, our runs are ranked higher with the strict
quantisation than with any other quantisation function.

1 Introduction

The XML retrieval system at the University of Helsinki — EXTIRP — is com-
pletely independent of the XML document types as of 2005. In practice, the
information coded in element names is ignored, which in turn lets us keep the
doors open for collections of heterogeneous XML documents. The choice of ig-
noring the names of document structures also implies that our system specialises
in the Content-Only type queries where only the content of the result elements
has any significance.

As our XML search engine EXTIRP [1] has not much changed from the
previous year [2], it will not be described in full detail in this paper. Instead,

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 296–305, 2006.
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we take a look at one of its qualities that makes it fundamentally different from
other corresponding systems. The algorithm for selecting the indexed nodes from
the XML documents follows an approach that can be applied to arbitrary XML
documents. Besides considering the size of each node, it also analyses the content
in order to detect a sufficient amount of full-text that would make the fragment
worth indexing.

The major problem in the evaluation of our methods developed for hetero-
geneous XML documents is that thorough testing has been performed only on
a single document collection without the desired amount of heterogeneity. Con-
sequently, EXTIRP will be evaluated among all the other systems that may be
fine-tuned for the collection of IEEE journals. Once the INEX heterogeneous
collection track comes with methods for quantitative evaluation, we will be able
to get a wider perspective to the system performance as well as an evaluation
against other “het-track” systems. Another factor making our system quite chal-
lenged is the lack of human resources, which is why we cannot fully explore the
capabilities of our system.

This article is organised as follows. In Section 2, we review what the essential
parts of EXTIRP are made of. Then we focus on the selection of the indexed
fragments, first by looking into related research in Section 3, and second, by pre-
senting our own approach in Section 4. The performance of EXTIRP is analysed
in Section 5.

2 Background

Before building two indices — one for words, one for phrases — EXTIRP divides
the document collection into disjoint fragments. The root elements of the indexed
fragments are chosen with an algorithm for full-text fragment selection which will
be presented later in this paper in more detail. The disjoint fragments are then
naturally treated as traditional documents which are independent of each other.
The pros include that the traditional methods for information retrieval apply,
so we use the vector space model with a weighting scheme based on the tf*idf.
The biggest of the cons is that the size of the indexed fragments is static, and
if bigger or smaller answers are more appropriate for some query, the fragments
have to be either divided further or combined into bigger fragments. Because of
the previous challenges with fragment score combination [2], we have left it for
future research, and for now, the size of the answers that EXTIRP returns is
determined when the fragments are chosen for indexing instead of dynamically
adjusting the size according how relevant the fragment is to a query.

After the composition of the fragment index has been determined, we perform
certain post-processing called fragment expansion on the fragment content. The
purpose in the process is to take advantage of the XML markup of the fragment
as well as the structured nature of the source XML document before the actual
indexing methods are applied to the fragment content. The fragment expansion
techniques include the association of related content according to ID and IDREF
type attributes as well as structural weighting based on the local relations of
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text and XML elements. More details including the evaluation of the methods
is described in [3].

3 Related Work

In the first four years of INEX, we have seen many different approaches to
indexing XML documents. The major differences are found in the ways the
indexed units are defined. As the XML documents are often processed as trees,
it is natural to talk about nodes instead of elements. Hence, the challenge can be
called the selection of index nodes. One of the earliest approaches was proposed
by Fuhr et al. who treat predefined sets of elements as index nodes, e.g. sec
(sections), ss1, ss2 (subsections), and p (paragraphs) [4]. Approaches similar
to this have two major problems, from our point of view. First, the selection is
based on element names, and as such, the method does not scale to heterogeneous
XML documents. Second, the elements may be nested within each other, which
has to be taken into account whenever term frequencies are computed. Therefore,
traditional methods where documents are assumed to be independent may not
be directly applicable to a collection of overlapping index nodes.

In order to avoid the problem of defining good index nodes, some systems
blindly index all nodes [5, 6]. Although the method applies to arbitrary XML
documents, the overlap of the indexed elements still requires XML-specific in-
dexing methods. The overhead in the number of indexed nodes can be optimised
by setting certain cut-off values that represent the minimum size of an indexed
unit. According to the experiments by Kamps et al., the cutoff values of 20, 40,
50, and 60 index terms all reduce the amount of indexed nodes while showing lit-
tle difference in the actual IR performance of the system [7]. In a similar fashion,
EXTIRP comes with a configurable threshold for the minimum size requirement
for the indexed nodes.

Changes in the relation between a web page and a traditional document have
lead to problems that have solutions similar to that of EXTIRP for full-text
fragment selection. Search engines divide the web pages into fragments, which
enables block-level indexing and searching [8], whereas EXTIRP divides XML
documents into fragments, thus enabling fragment-level search.

4 Selection of Full-Text Fragments

In this section, we present an algorithm that determines from heterogeneous
XML documents a set of XML fragments of a chosen granularity. The indexed
fragments contain at least some full-text content, so that pure data fragments
are not indexed for full-text search. The distinction between data and full-text
is based on the full-text likelihood of the fragments which nicely helps us discard
the unwanted data from our full-text index. As the fragments do not overlap, we
assume that they can be searched as if they were independent documents, and
traditional IR methods are thus applicable.
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4.1 Full-Text Likelihood

Given any XML fragment, we want to be able to make a judgment about the
fragment containing a sufficient amount of full-text content to be indexed. A
sufficient amount of such content makes the fragment suitable for full-text search.
An automatic judgment mechanism requires that we can measure the fragments
on a scale where typical full-text fragments are situated at one end of the scale
and typical data fragments at the other end. The important points are not at
the ends of the scale, however, but in the middle where a pivot point divides the
scale into ranges of full-text and data values. Indicators that return appropriate
values on such a scale actually calculate the Full-Text Likelihood of the fragment.

A full-text indicator that has been proven successful in this algorithm is de-
fined as the ratio of Text nodes to Element nodes (T/E) [3]. A pivot point p
between data and full-text is defined as T/E = 1.00 where a fragment with a
T/E value greater than 1.00 is considered a full-text fragment. The values of the
T/E measure fall in the range [0,∞] so that empty elements have the value of 0,
data fragments have values in the range ]0,p], and full-text fragments in the
range [p,∞[.

4.2 Parameters for the Algorithm

The granularity level of the indexed fragments is the most significant parameter
for the algorithm. In a user-centred scenario, the level of granularity could be one
of the user preferences which is presented verbally, e.g. paragraph, subsection,
section, or article. Because the algorithm requires the parameters in a more
precise form, the name of the level is interpreted in terms of limits for the size,
as well as other significant factors. For example, the granularity can be verbally
presented in the form

G = Gx, where x ∈ {paragraph, subsection, section, document},
which is converted into a size range for full-text fragments, so that
G = {[min, max], T/E ≥ 1.00}.
Given granularity G, we perform the division d of a document collection C

into n fragments f1, ..., fn. The division can also be defined as a function
dG(C)={f1, ..., fn},

where C is a set of arbitrary XML documents. According to our goal, the frag-
ments f1, ..., fn must be disjoint.

4.3 Tree Traversal

As each of the divided XML documents is considered independent of the other
documents, we process the collection of documents serially, one XML document
at a time. Because the definitions for different kinds of full-text fragments require
that we operate on document trees, the algorithm basically defines how the tree
is traversed and what to do with the traversed nodes.

The nave approach is to traverse the whole tree from first to last node and test
all the element nodes on the way. Besides being slow, this approach may also lead
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to other problems concerning nested elements because it is possible that both
the parent and the child elements qualify. However, being thorough may work
if overlapping and nested fragments are acceptable in the index, but otherwise,
additional testing of nodes is necessary for each node that is traversed. If we
optimise the tree traversal by adding conditions on branch selection we do not
only make the traversal more efficient but we also have the option of restricting
the output to disjoint fragments without an extra cost.

In the optimised approach, the beginning state of the division consists of
an empty fragment collection F = ∅ and the current node c which is set to
be the document root. The current node is first tested for size. If the size is
bigger than the maximum size of the granularity, c is assigned each of the child
element nodes one by one. If the size of the current node falls in the given range,
the node is tested for full-text likelihood. In the case that c has too structured
content so that T/E<1.0, c is again assigned each of the child element nodes.
Otherwise, when the size of c fits the given range and when the content passes
as full-text, we add c to F and move on to the next branch in the document
tree. The acceptance as a full-text fragment and a size below the given range are
both stopping conditions for the recursive testing of child nodes. In other words,
the child nodes are tested until they contain enough full-text or until they are
too small. The tree traversal is then repeated for each document in collection
C. When the algorithm stops, the fragment bodies that have been added to F
represent the disjoint full-text fragments that can be selected from the XML
documents in the colletion.

The pseudo code for the algorithm is presented in Figure 1. The accepted
size range [Gmin, Gmax] is considered a global variable more than an actual
parameter by its nature, and only the current node c is passed on at each re-
cursive function call. The algorithm can be optimised by reordering the tests,
however, the optimal order is dependent on the input documents. For example,
if the test for full-text likelihood (ftl(node) fails more often than the test for

Algorithm SelectFullText(node) {
if size(node) > Gmax

// Discard node (too big)
for each child: SelectFullText(node.child);

else if size(node) < Gmin
// Discard node (too small)
break; // Skip children

else if ftl(node) = data // Discard node as data
for each child: SelectFullText(node.child);

else
accept(node);
break;

}

Fig. 1. Pseudo code of the algorithm that returns a set of disjoint qualified full-text
fragments from a given XML document
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the fragment size, the FTL test should come before the size test assuming that
they can be computed at an equal cost.

4.4 Two Runs for the CO.Focussed Task

The algorithm for fragment selection was run with two sets of parameters for
our official runs in 2005. The finer granularity of fragments was defined as G =
{[150, 7K], T/E ≥ 1.00}. A selection of the most common paths in the index is
shown in Figure 2.

The most common root element among the total of 367,009 full-text fragments
seems to be p (paragraph), but a large number of whole sections (sec) and
subsections (ss1) also qualified. There were a total of 611 different paths to the
root of the fragments in this collection.

The granularity for the rather coarse fragment index is defined as G =
{[250, 20K], T/E ≥ 1.00}. As the maximum size of the fragments is 20,000 char-
acters, we can expect to find fewer paragraphs and also fewer fragments in this
index. A selection of the corresponding paths is shown in Figure 3.

The most common path leads to a section element (sec), which is not sur-
prising considering how the size range is defined. The number of article elements
might seem strange, though. Although the article elements only represent 5.3%
of all the fragments, they represent nearly 40% of the total of 16,739 article
elements in the collection. To summarise, the coarse index contains a total of
125,049 full-text fragments with 308 different paths to their roots. Achieving the
same composition of the index is nearly impossible if we use element names as
the basis for index node selection.

The two runs that we submitted for the CO.Focussed task were built by
ranking the fragments for each query. The ranking system has been described in
the earlier workshop papers [1, 2]. In 2005, one run was built from each index so
that both runs contained fragments of a single granularity.

Freq. Path Common name

75193 /article/bdy/sec/p paragraph
62899 /article/bdy/sec section
49373 /article/bdy/sec/ss1 subsection
25776 /article/bdy/sec/ss1/
22990 /article/bdy/sec/ip1 introductory paragraph
12486 /article/fm front matter
10050 /article/bdy/sec/ss1/ip1
9138 /article/bm/vt biography
7252 /article/bdy/sec/ss1/ss2 subsection
6087 /article/bm/vt/p

...
1700 /article

Fig. 2. Most common paths to selected full-text fragments with a size in the range of
150–7,000 characters
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Freq. Path Common name

54885 /article/bdy/sec section
9091 /article/bdy/sec/ss1 subsection
8225 /article/fm front matter
7970 /article/bdy/sec/p paragraph
6594 /article article
6340 /article/bm/vt biography
4074 /article/bm/vt/p
3405 /article/bdy/sec/ip1 introductory paragraph
3124 /article/bm back matter
1681 /article/bdy/sec/ss1/p
1381 /article/bm/ack acknowledgement
1375 /article/bm/app appendix
1059 /article/bdy article body

Fig. 3. Most common paths to selected full-text fragments with a size in the range of
250–20,000 characters

5 Results

Both our runs contain results that are comparable to the traditional documents:
1) the fragments do not overlap, and 2) they represent a single level of granularity.
Therefore, the results can be fairly evaluated with a variety of different metrics
without too many challenges specific to XML retrieval. For example, the overlap
of the answers does not have to be taken into account in order to evaluate our
runs as they contain no overlap. Even if the full recall-base associated with the
metric contains overlapping answers, only the evaluation scores will be overly
low without an actual effect on the relative system rankings.

Moreover, the size of the relevant answers plays a minimal role as the variation
in the fragment sizes is not much bigger than that in traditional Information
Retrieval.

All the metrics available on the official INEX website1 as well as on the LIP6
metric website2 agree that the run based on the smaller fragments resulted in
more relevant answers to the test queries. We will thus pay more attention to
the run called ‘UHelCOFoc2.xml’. Figure 4 shows all the official submissions
evaluated with the official INEX 2002 metric (strict quantisation). The curves
demonstrate the typical behaviour of EXTIRP: The first few answers to the
queries are highly relevant, but the quality of the answers rapidly deteriorates.

The observation of rapidly sinking precision cannot be explained by looking
at the metric, as similar phenomenon occurs with other metrics, as well. The
relative system rankings of our best run are shown in Table 1 which suggests
that EXTIRP in its current setting is only good for tasks where high precision
is preferred to high recall. This observation might be interesting considering

1 http://inex.is.informatik.uni-duisburg.de/2005/
2 https://inex.lip6.fr/2005/metrics/
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Fig. 4. EXTIRP among the top performers — when a few highly relevant answers are
enough

Table 1. Relative rankings of the run ‘UHelCOFoc2.xml’

Metric @1 @5 @10 @100 @1500
ncXG (strict) 8 12 15 34 27
ncXG (generalised) 13 26 29 32 22
EPRUM (GK-SOG) 19 18 18 24 24
inex eval (strict) 1 2 11 26 22
inex eval (generalised) 11 19 25 31 24

applications where only few highly relevant answers are required, such as search-
ing over slow connection and displaying results on a low-resolution display.

Although the runs submitted for the CO.Focussed task were not supposed
to contain any overlapping answers, 15 out of the 44 official runs (34.1%) did,
anyway. By the nature of the overlap, the fewer answers are considered, the
weaker is the effect of the overlap. If we only look at the first answer to each query
(precision @1), all the runs are equal in that a single answer cannot overlap with
itself. The INEX 2002 metric inex eval is known to favour overlapping relevant
answers, which partly explains why other curves are less steep than those of
EXTIRP.

The relative rankings reveal another feature of EXTIRP. By comparing the
effect of different quantisation functions on the rankings, we see how EXTIRP is
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ranked higher with the strict quantisation, according to which, less than highly
relevant answers are as good as irrelevant answers. This observation indicates
that other systems are better at the finding the marginally relevant answers,
which may be the cost of the high initial precision of our system.

Other runs were submitted for the Co.Thorough task, but due to some un-
fortunate bugs in the implementation, the results are not descriptive of the
underlying methods.

6 Conclusion

In 2005, our primary goal was to confirm some previous observations about the
characteristics of the XML retrieval system EXTIRP. Although the number of
different evaluation metrics has been steadily growing, the interpretations of the
results of EXTIRP has not changed much. It seems that runs consisting of nearly
equi-sized answers with no overlap can be compared with the majority of metrics
so that the relative rankings of the runs are similar despite the different shapes
of the curves.

Based on the results of the INEX 2005 queries, we conclude that the compro-
mised version of EXTIRP performs best when only few highly relevant answers
are enough to satisfy the system requirements. Those who dream of high recall
should look at different systems because even with all the additional features
implemented, EXTIRP is not likely to excel in the high recall tasks. However,
the relatively high precision at low recall levels has high prospects if we consider
reusing the good quality. For example, query expansion is certainly one of the
ways to propagate the high relevance of the answers further down the result list.
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Abstract. Different scenarios of XML retrieval are analysed in the
INEX 2005 ad hoc track, which reflect different query interpretations
and user behaviours that may be observed during XML retrieval. The
RMIT University group’s participation in the INEX 2005 ad hoc track in-
vestigates these XML retrieval scenarios. Our runs follow a hybrid XML
retrieval approach that combines three information retrieval models with
two ways of identifying the appropriate element granularity and two
XML-specific heuristics to rank the final answers. We observe different
behaviours when applying our hybrid approach to the different retrieval
scenarios, suggesting that the optimal retrieval parameters are highly de-
pendent on the nature of the XML retrieval task. Importantly, we show
that using structural hints in content only topics is a useful feature that
leads to more precise search, but only when level of overlap among the
retrieved elements is considered by the evaluation metric.

1 Introduction

Of the seven tracks at INEX 2005 — each exploring different applications of XML
retrieval — our RMIT University group participated in four: ad hoc, interactive,
multimedia [3], and heterogeneous. In this paper, we discuss our participation
in the ad hoc track.

Two types of topics are explored in the ad hoc track: Content Only and
Structure (CO+S) and Content And Structure (CAS). A CO+S topic is a request
that typically ignores the document structure by only specifying plain query
terms. However, there may be cases where adding structural hints to the query
results in more precise search. Some CO+S topics therefore express the same
information need by either ignoring or including the structural hints (we call
the latter +S topics). Figure 1 shows a snippet of CO+S topic 203 that was
proposed by our group, where two topic fields — title and castitle — are
used to represent the two interpretations. A CAS topic is a request that contains
references to the document structure and explicitly specifies the type of the
returned answer elements (the target element) and the type of the contained
elements of the search context (the support elements).

Within the INEX 2005 ad hoc track there are three XML retrieval sub-
tasks: the CO, the +S, and the CAS sub-task, reflecting the three types of topics

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 306–320, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



RMIT University at INEX 2005: Ad Hoc Track 307

used. Three retrieval strategies are explored in the CO+S sub-tasks: Focussed,
Thorough, and FetchBrowse, which model different aspects of the XML re-
trieval task. Four retrieval strategies are explored in the CAS sub-task: SS, SV,
VS, and VV, which correspond to the way target and support elements are inter-
preted [7].

The system we use in the ad hoc track follows a hybrid XML retrieval ap-
proach, combining information retrieval features from Zettair1 (a full-text search
engine) with XML-specific retrieval features from eXist2 (a native XML
database). The hybrid approach can be seen as a “fetch and browse” [2] XML
retrieval approach, since full articles estimated as likely to be relevant to a query
are first retrieved by Zettair (the fetch phase), and then the most specific ele-
ments within these articles are extracted by eXist (the browse phase) [9].

To calculate the similarity score of an article to a query (represented by terms
that appear in the title part of an INEX topic), a similarity measure is used by
Zettair. Three similarity measures are currently implemented, each based on one
of the following information retrieval models: the vector-space model, the proba-
bilistic model, and the language model. For the fetch phase of our hybrid system,
we investigate which information retrieval model yields the best effectiveness for
full article retrieval.

<inex_topic topic_id="203" query_type="CO+S" ct_no="5">
<title> code signing verification </title>

<castitle> //sec[about(., code signing verification)] </castitle>

<description> Find documents or document components, most probably

sections, that describe the approach of code signing and verification.

</description>

<narrative> I am working in a company that authenticates a wide range of

web database applications from different software vendors. [...]

</narrative>

</inex_topic>

Fig. 1. A snippet of the INEX 2005 CO+S topic 203

To identify the appropriate granularity of elements to return as answers, we
use a retrieval module that utilises the structural information in the eXist list of
extracted elements. For the browse phase of our hybrid system, we investigate
which combination of the two ways of identifying element answers and the two
XML-specific heuristics for ranking the answers yields the best effectiveness for
element retrieval.

1 http://www.seg.rmit.edu.au/zettair/
2 http://exist-db.org/
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2 Hybrid XML Retrieval

In this section, we describe the three information retrieval models implemented
in Zettair, the two algorithms for identifying the CREs, and the two heuristics
for ranking the CREs, all of which are used by our hybrid system.

2.1 Information Retrieval Models

The similarity of a document to a query, denoted as Sq,d, indicates how closely
the content of the document matches that of the query. To calculate the query-
document similarity, statistical information about the distribution of the query
terms — within both the document and the collection as a whole — is often
necessary. These term statistics are subsequently utilised by the similarity mea-
sure. Following the notation and definitions of Zobel and Moffat [14], we define
the basic term statistics as:

– q, a query;
– t, a query term;
– d, a document;
– ND, the number of all the documents in the collection;
– For each term t:

• fd,t, the frequency of t in the document d;
• NDt , the number of documents containing the term t (irrespective of the

term frequency in each document); and
• fq,t, the frequency of t in query q.

– For each document d:
• fd = |d|, the document length approximation.

– For the query q:
• fq = |q|, the query length.

We also denote the following sets:

– D, the set of all the documents in the collection;
– Dt, the set of documents containing term t;
– Td, the set of distinct terms in the document d;
– Tq, the set of distinct terms in the query, and Tq,d = Tq ∩ Td.

Vector-Space Model. In the vector-space model, both the document and the
query are representations of n-dimensional vectors, where n is the number of
distinct terms observed in the document collection. The best-known technique
for computing similarity under the vector-space model is the cosine measure,
where the similarity between a document and the query is computed as the
cosine of the angle between their vectors.

Zettair uses pivoted cosine document length normalisation [10] to compute
the query-document similarity under the vector-space model:

Sq,d =
1

WD × Wq
×
∑

t∈Tq,d

(1 + loge fd,t) × loge

(
1 +

ND
NDt

)
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where WD =
(
(1.0 − s) + s × Wd

WAL

)
represents the pivoted document length

normalisation, and Wq is the query length representation. The parameter s rep-
resents the slope (we use the value of 0.25), whereas Wd and WAL represent the
document length (usually taken as fd) and the average document length (over
all documents in D), respectively.

Probabilistic Model. Probabilistic models of information retrieval are based
on the principle that documents should be ranked by decreasing probability of
their relevance to the expressed information need. Zettair uses the Okapi BM25
probabilistic model developed by Sparck Jones et al. [11], which has proved
highly successful in a wide range of experiments:

Sq,d =
∑

t∈Tq,d

wt × (k1 + 1) fd,t

K + fd,t
× (k3 + 1) fq,t

k3 + fq,t

where wt = loge

(
ND−NDt+0.5

NDt+0.5

)
is a representation of inverse document fre-

quency, K = k1 ×
[
(1 − b) + b·Wd

WAL

]
, and k1, b and k3 are constants, in the range

1.2 to 1.5 (we use 1.2), 0.6 to 0.75 (we use 0.75), and 1,000 (effectively infi-
nite), respectively. Wd and WAL represent the document length and the average
document length.

Language Model. Language models are probability distributions that aim
to capture the statistical regularities of natural language use. In information
retrieval, language modelling involves estimating the likelihood that both the
document and the query could have been generated by the same language model.
Zettair uses a query likelihood approach with Dirichlet smoothing [13]:

Sq,d = fq × log λd +
∑

t∈Tq,d

log
(

ND × fd,t

μ × NDt

+ 1
)

where μ is a smoothing parameter (we use the value of 2,000), while λd is cal-
culated as: λd = μ/ (μ + fd).

2.2 Identifying the Appropriate Element Granularity

For each INEX topic (CO, +S, or CAS), a topic translation module is first used
to automatically translate the underlying information need into a Zettair query.
A list of (up to) 500 article elements — presented in descending order of
estimated likelihood of relevance — is then returned as a resulting answer list
for the INEX topic3.

To retrieve elements rather than full articles, a second topic translation mod-
ule is used to formulate the eXist query. Depending on the topic type, either
3 We retrieve (up to) 500 rather than 1,500 articles because roughly that number of

articles is used to generate the pool of retrieved articles for relevance judgements.



310 J. Pehcevski, J.A. Thom, and S.M.M. Tahaghoghi

Table 1. eXist list of matching elements for INEX 2005 CO topic 203 and article
co/2000/r7108. The elements in the list are generated by using an eXist OR query.

Article Matching element

co/2000/r7108 /article[1]/bdy[1]/sec[1]/ip1[1]
co/2000/r7108 /article[1]/bdy[1]/sec[1]/p[1]
co/2000/r7108 /article[1]/bdy[1]/sec[2]/st[1]
co/2000/r7108 /article[1]/bdy[1]/sec[2]/p[2]
co/2000/r7108 /article[1]/bdy[1]/sec[2]/p[3]
co/2000/r7108 /article[1]/bdy[1]/sec[2]/p[4]
co/2000/r7108 /article[1]/bdy[1]/sec[4]/p[1]
co/2000/r7108 /article[1]/bdy[1]/sec[6]/ip1[1]
co/2000/r7108 /article[1]/bm[1]/app[1]/p[2]
co/2000/r7108 /article[1]/bm[1]/app[1]/p[3]
co/2000/r7108 /article[1]/bm[1]/app[1]/p[4]

terms alone, or both terms and structural query constraints from the INEX
topic are used to formulate the eXist query. We use the eXist OR query opera-
tor to generate the element answer list. The answer list contains (up to) 1,500
matching elements, which are taken from articles that appear highest in the
ranked list of articles previously returned by Zettair.

Consider the eXist answer list shown in Table 1. It shows matching elements
for the CO topic 203 after the eXist OR query operator is used (each matching
element in the list therefore contains one or more query terms). The matching
elements in the eXist answer list represent most specific (leaf) elements, and
eXist correctly presents these elements in document order.

To effectively utilise the information contained in the resulting list of match-
ing elements, we use a retrieval module capable of identifying the appropriate
granularity of elements to return as answers, which we refer to as Coherent Re-
trieval Elements (CREs) [9]. To identify the CREs, our module first sequentially
processes the list of matching elements, starting from the first element down to
the last. For each pair of matching elements, their most specific ancestor is cho-
sen to represent an answer element (a CRE). We denote these answer elements
as oCRE elements.

The rationale behind choosing only oCRE elements as answers stems from
the expectation that these elements are likely to provide better context for the
contained textual information than that provided by each of their descendent
leaf elements. However, it is often the case that relevance judgements for INEX
topics contain very specific answer elements [4, 9]. Therefore, the problem with
only presenting the oCRE elements as answers is that in most cases the matching
(and thus very specific) elements are not included in the final answer list. To
cater for this, our retrieval module supports a second, alternative algorithm for
identifying the CREs. The difference from the original oCRE algorithm is that,
after sequentially processing all the pairs of matching elements, those matching
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nCRE elements

oCRE elements

Matching elements

bdy[1]

sec[1]

ip1[1] p[1] p[3] p[4]st[1] p[2]

sec[6]

ip1[1]p[1]

bm[1]

article[1]

p[2] p[3] p[4]

app[1]sec[4]sec[2]

Fig. 2. Identifying appropriate element granularity: Matching, oCRE, and nCRE elements
for INEX 2005 topic 203 and article co/2000/r7108

elements whose immediate parents are not identified as CREs are also included
in the final list of answers. We expect these newly included matching elements
to allow for more focussed retrieval. We denote these answer elements as nCRE
elements.

Figure 2 shows a tree representation of the eXist list of matching elements, as
previously shown in Table 1. The matching elements appear within the triangle
boxes, the oCRE elements appear within the solid square boxes, while the nCRE
elements appear within dashed square boxes. Once the CREs are identified,
we use heuristics to rank and present the answer elements according to their
estimated likelihood of relevance.

2.3 Ranking the Answer Elements

In whole document retrieval, Anh and Moffat [1] present an empirical analysis
which reveals that, to maximise query effectiveness, it is very important that
answer documents contain most of the query terms. To explore the validity of
the above finding for XML retrieval, we consider the following ranking heuristics
in our CRE module:

1. The number of distinct query terms that appear in a CRE — more distinct
query term appearances (T) or fewer distinct query term appearances (t);

2. The length of the absolute path of the CRE, taken from the root element —
longer path (P) or shorter path (p); and

3. The frequency of all the query terms in a CRE — more frequent (F) or less
frequent (f).

Preliminary experiments using the INEX 2004 test collection show that two
heuristic combinations — TPF and a modification of PTF — perform better than
others in the case where more specific elements are target of retrieval. The two
heuristic combinations can be interpreted as follows.

With TPF, the CREs are first sorted in a descending order according to the
number of distinct query terms a CRE contains (the more distinct query terms
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Table 2. Rank orderings of retrieved nCRE elements using two ranking heuristic com-
binations (TPF and PTF2) for article co/2000/r7108. The query used is “code signing
verification”, which represents the title part of the INEX 2005 topic 203.

Rank TPF ordering PTF2 ordering

1 /article[1]/bdy[1]/sec[2] /article[1]/bdy[1]/sec[6]/ip1[1]
2 /article[1]/bdy[1] /article[1]/bdy[1]/sec[2]
3 /article[1] /article[1]/bm[1]/app[1]
4 /article[1]/bdy[1]/sec[6]/ip1[1] /article[1]/bdy[1]/sec[1]
5 /article[1]/bm[1]/app[1] /article[1]/bdy[1]
6 /article[1]/bdy[1]/sec[1] /article[1]
7 /article[1]/bdy[1]/sec[4]/p[1] /article[1]/bdy[1]/sec[4]/p[1]

it contains, the higher its rank). Next, if two CREs contain the same number
of distinct query terms, the one with the longer length of its absolute path is
ranked higher. Last, if the lengths of the two absolute paths are the same, the
CRE with more frequent query term appearances is ranked higher than the CRE
where query terms appear less frequently. The ranked list of CREs obtained by
using the TPF ranking heuristic for article co/2000/r7108 and the INEX 2005
topic 203 is shown in Table 2.

The table shows that when the TPF heuristic is used, less specific CREs tend
to be preferred over more specific ones. To produce more specific CREs early in
the ranking, the PTF ranking heuristic could be used. With PTF, the CREs are
first sorted in a descending order according to the length of the absolute path of
a CRE (where the longer CRE path results in a higher rank). Next, if the lengths
of the two absolute paths are the same, the CRE that contains a larger number of
distinct query terms is ranked higher. Last, if it also happens that the two CREs
contain the same number of distinct query terms, the CRE with more frequent
query term appearances is ranked higher. However, our experiments on the INEX
2004 test collection demonstrate that the system performance degrades when
using the PTF ranking heuristic, since most highly ranked (and thus very specific)
elements typically contain only one query term. We therefore use a modification
of this heuristic in our retrieval module to ensure that all CREs that contain
exactly one query term are moved to the end of the ranked list (where ties are
broken by the F heuristic). We denote this modified heuristic combination as
PTF2. The ranked list of CREs obtained by using the PTF2 ranking heuristic for
article co/2000/r7108 and the INEX 2005 topic 203 is also shown in Table 2.

3 Experiments and Results

In this section, we present results of experiments that evaluate the performance
of our INEX 2005 runs for each retrieval strategy in both the CO+S and CAS
sub-tasks. A description of each of our submitted runs is provided in Table 3.
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Table 3. List of the 26 CO+S and CAS runs submitted by our RMIT University group
to the INEX 2005 ad hoc track

Topic Similarity Answer Ranking Overlap
Run ID Type Interpretation Measure Elements Heuristic Allowed

CO+S.Thorough

nCRE-CO-PTF2 CO CO Okapi nCRE PTF2 Yes
nCRE-+S-PTF2 +S SS Okapi nCRE PTF2 Yes
nCRE-CO-TPF CO CO Okapi nCRE TPF Yes
nCRE-+S-TPF +S SS Okapi nCRE TPF Yes
oCRE-CO-PTF2 CO CO Okapi oCRE PTF2 Yes
oCRE-+S-PTF2 +S SS Okapi oCRE PTF2 Yes

CO+S.Focussed

nCRE-CO-PTF2-NO CO CO Okapi nCRE PTF2 No
nCRE-+S-PTF2-NO +S SS Okapi nCRE PTF2 No
nCRE-CO-TPF-NO CO CO Okapi nCRE TPF No
nCRE-+S-TPF-NO +S SS Okapi nCRE TPF No
oCRE-CO-PTF2-NO CO CO Okapi oCRE PTF2 No
oCRE-+S-PTF2-NO +S SS Okapi oCRE PTF2 No

CO+S.FetchBrowse
Okapi-CO-PTF2 CO CO Okapi nCRE PTF2 Yes
Okapi-+S-PTF2 +S SS Okapi nCRE PTF2 Yes
PCosine-CO-PTF2 CO CO PCosine nCRE PTF2 Yes
PCosine-+S-PTF2 +S SS PCosine nCRE PTF2 Yes
Dirichlet-CO-PTF2 CO CO Dirichlet nCRE PTF2 Yes
Dirichlet-+S-PTF2 +S SS Dirichlet nCRE PTF2 Yes

SSCAS

SS-PTF2 CAS SS Okapi — PTF2 Yes
SS-TPF CAS SS Okapi — TPF Yes

SVCAS
SV-PTF2 CAS SV Okapi — PTF2 Yes
SV-TPF CAS SV Okapi — TPF Yes

VSCAS
nCRE-VS-PTF2 CAS VS Okapi nCRE PTF2 Yes
nCRE-VS-TPF CAS VS Okapi nCRE TPF Yes

VVCAS
nCRE-VV-PTF2 CAS VV Okapi nCRE PTF2 Yes
nCRE-VV-TPF CAS VV Okapi nCRE TPF Yes

3.1 Evaluation Metrics

A new set of metrics is adopted in INEX 2005, which belong to the eXtended
Cumulated Gain (XCG) family of metrics [6]. We use the following two official
INEX 2005 metrics [5] to measure the retrieval effectiveness of our runs:

1. nxCG,with the nxCG[r] measure. The genLifted quantisation function is
used with nxCG with the following values for the rank r: 10, 25, and 50.
Wechoose this because with genLifted quantisation all the relevant
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elements — including the so-called too small elements — are considered
during evaluation (which is not the case with gen quantisation) [5]. The
three values for the rank r are officially reported on the INEX 2005
web site.

2. ep/gr, with the MAep measure. Both strict and genLifted quantisations
are used with ep/gr.

In addition to the above metrics, we also report values obtained with HiXEval:
an alternative evaluation metric for XML retrieval that is solely based on the
amount of highlighted relevant information for an INEX 2005 topic. The reported
values are: P@r, or the proportion of relevant information to all the information
retrieved at a rank r; and MAP, the mean average precision calculated at natural
recall levels [8].

3.2 CO+S Sub-task

Thorough Retrieval Strategy. The evaluation results of our INEX 2005 CO+S
runs for this strategy are shown in Table 4. Here, the level of overlap among
retrieved elements is not considered. Several observations can be drawn from
these results.

First, when comparing the two algorithms on how well they identify answer
elements, results for the CO runs obtained from the three metrics show that better
overall performance is achieved with the oCRE algorithm than with nCRE. This
finding suggests that, for the Thorough retrieval strategy, systems capable of only
retrieving contextual answers are better rewarded than systems that additionally
retrieve more specific elements as answers. Second, with the nCRE algorithm for
identifying answer elements, the TPF ranking heuristic — which first presents
those answers that contain most of the distinct query terms, irrespective of
how specific these answers are — is consistently better than the PTF2 ranking
heuristic that presents more specific answers first. Finally, when comparing each

Table 4. Evaluation results of our INEX 2005 CO and +S runs for the Thorough retrieval
strategy, obtained with nxCG, ep/gr, and HiXEval, using the genLifted quantisation
function with nxCG. The three metrics do not consider the amount of overlap between
retrieved elements (setting: off). For each evaluation measure, the best performing CO
run (the first of each pair of runs) is shown in bold.

nxCG[rank] ep/gr (MAep) HiXEval
Run 10 25 50 genLifted strict P@10 P@25 P@50 MAP

nCRE-CO-PTF2 0.200 0.212 0.193 0.019 0.008 0.256 0.254 0.216 0.072
nCRE-+S-PTF2 0.211 0.158 0.145 0.014 0.008 0.245 0.181 0.158 0.050
nCRE-CO-TPF 0.218 0.226 0.193 0.019 0.009 0.262 0.265 0.216 0.073
nCRE-+S-TPF 0.224 0.166 0.1145 0.014 0.009 0.263 0.191 0.159 0.051
oCRE-CO-PTF2 0.220 0.227 0.196 0.019 0.010 0.263 0.258 0.204 0.083
oCRE-+S-PTF2 0.210 0.166 0.139 0.012 0.009 0.240 0.191 0.145 0.053
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Table 5. Evaluation results of our INEX 2005 CO and +S runs for the Focussed retrieval
strategy, obtained with nxCG, ep/gr, and HiXEval, using the genLifted quantisation
function with nxCG. The three metrics do consider the amount of overlap between
retrieved elements (setting: on). For each evaluation measure, the best performing CO
run (the first of each pair of runs) is shown in bold.

nxCG[rank] ep/gr (MAep) HiXEval
Run 10 25 50 genLifted strict P@10 P@25 P@50 MAP

nCRE-CO-PTF2-NO 0.044 0.041 0.048 0.012 0.012 0.264 0.240 0.191 0.104
nCRE-+S-PTF2-NO 0.044 0.041 0.060 0.014 0.014 0.252 0.193 0.146 0.112
nCRE-CO-TPF-NO 0.040 0.041 0.054 0.011 0.011 0.248 0.212 0.177 0.117
nCRE-+S-TPF-NO 0.040 0.039 0.067 0.012 0.012 0.249 0.168 0.136 0.120
oCRE-CO-PTF2-NO 0.031 0.052 0.050 0.011 0.011 0.298 0.249 0.189 0.118
oCRE-+S-PTF2-NO 0.021 0.045 0.060 0.013 0.013 0.256 0.188 0.137 0.112

CO run with its corresponding +S run, the obtained results show that using
structural hints from +S topics does not result in better overall performance,
although runs using the nCRE algorithm seem to benefit from the structural
hints at ten or fewer elements returned.

Focussed Retrieval Strategy. Table 5 shows evaluation results of our INEX
2005 CO+S runs for the Focussed retrieval strategy. Contrary to the Thorough
retrieval strategy, in this case the amount of overlap between retrieved elements
is considered by all the metrics. To filter overlap, we use a top-down filter-
ing approach where elements that either contain or are contained by any ele-
ment residing higher in the ranked list are removed from the resulting answer
list.

When comparing our two algorithms on how well they identify answer ele-
ments, we observe that with HiXEval the oCRE algorithm overall performs better
than the nCRE algorithm. However, the results obtained using MAep with both
quantisations show the opposite. This suggests that the most specific elements
that are retained as answers by nCRE bring additional user gain in the Focussed
retrieval strategy. With the nCRE algorithm for identifying answer elements, we
observe that with all but two evaluation measures the PTF2 ranking heuristic
performs better than TPF.

For each of the three non-overlapping CO runs, the results obtained with ep/gr
show that using structural hints from the +S topics results in increased overall
retrieval performance. With HiXEval, however, this improvement is only visi-
ble when measuring the overall performance of the nCRE runs, which suggests
that structural hints are not useful for runs that contain non-overlapping and
contextual elements. The nature of the XML retrieval task, therefore, seems to
influence how structural hints in the INEX +S topics should be interpreted. More
precisely, using structural hints from the INEX +S topics seems to be more useful
for Focussed than for the Thorough retrieval strategy.
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Fig. 3. Evaluation results of our INEX 2005 CO runs for the FetchBrowse-article
retrieval strategy, obtained by using the genLifted quantisation function in the ep/gr
INEX 2005 metric

FetchBrowse Retrieval Strategy. The evaluation methodology for this strat-
egy is different than the ones that were used for the previous two strategies
since two separate evaluation results are calculated: an article-level result and
an element-level result [5].

By measuring the article-level results obtained from our three FetchBrowse
runs, we aim to find which of the three information retrieval models implemented
in Zettair yields the best performance for full article retrieval. The graph in
Fig. 3 shows the results of this analysis. We observe that highest effort-precision
at 0.3 or less gain-recall is achieved with the Okapi similarity measure, which
also produces highest value for MAep among the three measures. Of the other
two implemented measures, Dirichlet seems to perform better overall than
PCosine. When compared with their corresponding +S runs, all the similarity
measures except Dirichlet produce higher MAep values for +S runs than for
runs that use plain text queries.

By measuring the element-level results obtained from our three FetchBrowse
runs, we aim to investigate the extent to which each of the three information
retrieval models influences the system performance for element retrieval. Table 6
shows results for the FetchBrowse retrieval strategy when elements are units of
retrieval. The evaluation methodology implemented in the ep/gr metric for this
strategy is explained by Kazai and Lalmas [5]. The two metrics, ep/gr and
HiXEval, use both overlap settings (on,off). The evaluation measures used by
HiXEval in this case are as follows: Prec, which measures precision at final rank
for each article cluster, averaged over all clusters and then over all topics; and
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Table 6. Evaluation results of our INEX 2005 CO and +S runs for the FetchBrowse-
Element retrieval strategy. The two metrics, ep/gr and HiXEval, use both overlap set-
tings (on,off). For an evaluation measure and an overlap setting, the best performing
CO run (the first of each pair of runs) is shown in bold.

overlap=off overlap=on
ep/gr (MAep) HiXEval ep/gr (MAep) HiXEval

Run genLifted strict Prec MAP genLifted strict Prec MAP

Okapi-CO-PTF2 0.024 0.012 0.062 0.023 0.086 0.011 0.041 0.028
Okapi-+S-PTF2 0.014 0.007 0.060 0.018 0.062 0.008 0.047 0.030
PCosine-CO-PTF2 0.025 0.013 0.066 0.024 0.090 0.012 0.043 0.029
PCosine-+S-PTF2 0.014 0.008 0.063 0.019 0.065 0.009 0.048 0.030
Dirichlet-CO-PTF2 0.023 0.011 0.060 0.023 0.082 0.010 0.041 0.028
Dirichlet-+S-PTF2 0.013 0.006 0.060 0.017 0.058 0.007 0.048 0.030

MAP, the mean average precision (at natural recall levels) for each article cluster,
averaged over all clusters and then over all topics.

Results in Table 6 show that, for FetchBrowse element-level retrieval, the
PCosine-CO-PTF2 run yields the highest retrieval performance among the three
CO runs, irrespective of the metric and the overlap setting used. However, when
the performance of each CO run is compared to that of its corresponding +S run,
we observe that the overlap setting does have an impact on the measured com-
parison, but only when the HiXEval metric is used. When the amount of over-
lap between retrieved elements is not considered, the results obtained from both
metrics show that the structural hints found in the +S topics are not useful. How-
ever, with overlap considered (setting: on), the results obtained from the HiXEval
metric show that using structural hints leads to more precise search, which is
reflected in increased values for both Prec and MAP. This suggests that using
structural hints from the INEX +S topics is a useful feature in the FetchBrowse
retrieval strategy, provided that the level of overlap among retrieved elements is
considered.

3.3 CAS Sub-task

Since 2003, there has been much debate among the INEX participants over how
to interpret the structure component of a CAS topic. For instance, at INEX
2003 and 2004 there were two interpretations: SCAS, which allows for a strict
interpretation of the target element; and VCAS, which allows for the target ele-
ment to be interpreted vaguely. However, none of these interpretations consider
how the support elements of the CAS topic should be interpreted. Consequently,
four retrieval strategies were explored in the INEX 2005 CAS sub-task: SS, SV,
VS, and VV, which represent the four possible combinations of interpreting both
the target and support elements.

Trotman and Lalmas [12] perform an extensive analysis of all the INEX 2005
runs that were submitted for the CAS sub-task, which reveals that those retrieval
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Table 7. Evaluation results of our INEX 2005 CAS runs for the SS, SV, VS, and VV

retrieval strategies, obtained with nxCG, ep/gr, and HiXEval, using the genLifted
quantisation function with nxCG. The three metrics do not consider the amount of
overlap between retrieved elements (setting: off). For an evaluation measure and a
retrieval strategy, the best performing CAS run is shown in bold.

nxCG[rank] ep/gr (MAep) HiXEval
Run 10 25 50 genLifted strict P@10 P@25 P@50 MAP

SSCAS
SS-PTF2 0.288 0.339 0.360 0.070 0.044 0.184 0.138 0.117 0.055
SS-TPF 0.316 0.345 0.368 0.071 0.045 0.208 0.143 0.124 0.057
SV-PTF2 0.194 0.177 0.197 0.052 0.062 0.150 0.126 0.114 0.052
SV-TPF 0.229 0.187 0.206 0.053 0.063 0.185 0.134 0.121 0.055

SVCAS
SS-PTF2 0.214 0.191 0.229 0.065 0.066 0.207 0.154 0.133 0.061
SS-TPF 0.243 0.195 0.236 0.065 0.068 0.237 0.159 0.140 0.062
SV-PTF2 0.135 0.127 0.157 0.040 0.049 0.131 0.113 0.105 0.047
SV-TPF 0.169 0.138 0.164 0.041 0.051 0.169 0.122 0.112 0.049

VSCAS
nCRE-VS-PTF2 0.129 0.125 0.101 0.008 0.004 0.124 0.113 0.091 0.029
nCRE-VS-TPF 0.230 0.144 0.113 0.009 0.005 0.210 0.128 0.101 0.032
nCRE-VV-PTF2 0.098 0.108 0.100 0.011 0.006 0.097 0.100 0.092 0.046
nCRE-VV-TPF 0.198 0.127 0.112 0.012 0.007 0.183 0.114 0.102 0.049

VVCAS
nCRE-VS-PTF2 0.164 0.171 0.142 0.006 0.005 0.204 0.187 0.153 0.042
nCRE-VS-TPF 0.265 0.188 0.152 0.007 0.005 0.278 0.198 0.162 0.044
nCRE-VV-PTF2 0.109 0.135 0.138 0.009 0.007 0.168 0.191 0.175 0.058
nCRE-VV-TPF 0.249 0.183 0.149 0.010 0.008 0.286 0.215 0.186 0.063

strategies that share the same interpretation of the target element correlate. In
this section, we confirm their findings with our own CAS runs, by submitting the
two SS runs to the SV retrieval strategy (and vice versa), and by also submitting
the two VS runs to the VV retrieval strategy (and vice versa).

Table 7 presents the results of our CAS runs for each of the four retrieval
strategies using measures from three evaluation metrics, where the amount of
overlap between retrieved elements is not considered (overlap setting: off). For
the two retrieval strategies that strictly interpret the target element (SS and SV),
we observe that — regardless of the evaluation measure or metric used — the
best performing run for the SS strategy, when submitted to the SV strategy, again
performs best. On the other hand, we observe similar (but not the identical)
behaviour for the two retrieval strategies that allow for a vague interpretation
of the target element (VS and VV). More precisely, with nxCG and ep/gr the best
performing run in the VS strategy also performs best when submitted to the VV
strategy, whereas with HiXEval this is only true with P@50 and MAP measures.
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Table 7 also shows that the performance of our CAS runs that use the TPF
ranking heuristic is consistently higher than that of runs using the PTF2 heuristic,
regardless of the retrieval strategy, evaluation measure, or metric used.

4 Conclusions

In this paper we have reported on our participation in the INEX 2005 ad-hoc
track. We have tested three information retrieval models, two ways of identifying
the appropriate element granularity, and two XML-specific ranking heuristics
under different retrieval strategies in both the CO+S and CAS sub-tasks.

For the CO+S sub-task, better overall performance seems to be achieved when
our retrieval module uses only contextual answer elements (oCRE), and not when
most specific answer elements (nCRE) are also used. Moreover, the obtained user
cumulated gain seems to be higher when the retrieval module uses the ranking
heuristic which first presents those answers that contain most of the distinct
query terms (TPF) than the ranking heuristic that presents more specific answers
first (PTF2), although for the Focussed retrieval strategy the gain seems to be
higher with PTF2. Using structural hints in the +S topics does not lead to more
precise search; however, we have observed that structural hints improve both
early and overall precision only for those retrieval strategies that do not allow
retrieving overlapping elements. More specifically, Focussed retrieval strategy
seems to benefit more from the structural hints than FetchBrowse, while there
is no visible performance improvement for the Thorough retrieval strategy.

For the CAS sub-task we have observed that, regardless of the way the con-
straints in a CAS topic are interpreted, the TPF ranking heuristic produces consis-
tently better performance than the PTF2 ranking heuristic. Importantly, for the
CAS sub-task we have verified the previous finding by Trotman and Lalmas [12]
that the structure component of an INEX CAS topic should only be interpreted in
two different ways: one that allows for strict interpretation of the target element,
and another that allows for its vague interpretation.

In the future, we plan to extend this work by implementing and experimenting
with different combinations of information and data retrieval models in eXist to
allow for more effective as well as more efficient XML retrieval.
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Abstract. This paper reports on SIRIUS, a lightweight indexing and search 
engine for XML documents. The retrieval approach implemented is document 
oriented. It involves an approximate matching scheme of the structure and 
textual content. Instead of managing the matching of whole DOM trees, 
SIRIUS splits the documents object model in a set of paths. In this view, the 
request is a path-like expression with conditions on the attribute values. In this 
paper, we present the main functionalities and characteristics of this XML IR 
system and second we relate on our experience on adapting and using it for the 
INEX 2005 ad-hoc retrieval task. Finally, we present and analyze the SIRIUS 
retrieval performance obtained during the INEX 2005 evaluation campaign and 
show that despite the lightweight characteristics of SIRIUS we were able to 
retrieve highly relevant non overlapping XML elements and obtained quite 
good precision at low recall values. 

1   Introduction 

The widespread use of XML in digital libraries, product catalogues, scientific data 
repositories and across the Web prompted the development of appropriate searching 
and browsing methods for XML documents. Approximate matching in XML provides 
the possibility of querying the information acquired by a system having an incomplete 
or imprecise knowledge about both the structure and the content of the XML 
documents [14, 15]. In this context, we propose and experiment with a lightweight 
model for indexing and querying XML documents. We develop a simple querying 
algebra implemented using fast approximate searching mechanisms for structure and 
textual content retrieval. In order to evaluate the expected benefits and drawbacks of 
this new kind of search functionality we propose algorithms and data structures whose 
principles are detailed hereinafter.  

We propose specific data structures dedicated to the indexing and retrieval of 
information elements embedded within heterogeneous XML data bases. The indexing 
scheme is well suited to the characterization of various contextual searches, expressed 
either at a structural level or at an information content level. Search mechanisms are 
based on context tree matching algorithms that involve a modified Levenshtein 
editing distance [11] and information fusion heuristics. The implementation that is 
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described highlights the mixing of structured information presented as field/value 
instances and free text elements. Our approach is evaluated experimentally at the 
INEX 2005 workshop. The results are encouraging and give rise to a number of future 
enhancements. 

The paper is organized as follows. In Section 2 we present the main functionalities 
and characteristics of the SIRIUS XML IR system. In Section 3 we relate on our 
experience on adapting and using the system in the INEX 2005 ad-hoc retrieval task. 
In Section 4 we present and analyze the SIRIUS retrieval evaluation results for the 
VVCAS, CO.Thorough, COS.Thorough, CO.Focussed and COS.Focussed tasks. 
Finally, in Section 5 we summarize our conclusions and propose some future work 
perspectives.  

2   SIRIUS XML IR System 

SIRIUS [6, 7] is a lightweight indexing and search engine for XML documents 
developed at the VALORIA laboratory of the University of South-Brittany. The 
retrieval approach implemented in SIRIUS is document oriented. It involves an 
approximate matching scheme of the structure and textual content. Instead of 
managing the matching of whole DOM trees, SIRIUS splits the documents object 
model in a set of paths. This set is indexed using optimized data structures. In this 
view, the request is a path-like expression with conditions on the attribute values. For 
instance /document(> date "1994")/chapter(= number 3)/John is a request aiming to 
extract the documents (written after 94) with the word John in the chapter number 3. 
We designed a matching process that takes into account mismatched errors both on 
the attributes and on the xml elements. The matching process uses a weighted editing 
distance on XML paths: this provides an approximate matching scheme able to 
manage jointly the request on textual content and on document structure. The search 
scheme is extended by a set of Boolean and IR retrieval operators, and features a set 
of thesaurus rewriting rules. Recently the system was extended with a specialized set 
of operators for extracting, indexing and searching heterogeneous sequential and time 
series data embedded in heterogeneous XML documents [8]. 

2.1   Indexing Scheme 

Each XML element in an XML document may be composed of a set of possible 
nested XML elements, textual pieces of information (TEXT or CDATA), unordered 
<attribute, value> pairs, or a mixture of such items. XML documents are generally 
represented as rooted, ordered, and labeled trees in which each node corresponds to 
an element and each edge represent a parent-child relationship. 

XML Context. According to the tree structure, every node n inherits a path p(n) 
composed with the nodes that link the root to node n. This path is an ordered 
sequence of XML elements potentially associated to unordered <attribute, value> 
pairs A(ni), that determines the XML context in which the node is occurring. A tree 
node n, containing textual/mixed information can be decomposed into textual sub-
elements. Each string s (or word, lemma, …) of a textual sub-element is also linked to 
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p(n). This XML context characterizes the occurrence of s within the document and 
can be represented as follows: 

p(n)=<n0 , A(n0)> <n1 , A(n1)> …<n , A(nn)> (1) 

Index Model. The indexing process involves the creation of an enriched inverted list 
designed for the management of these XML contexts. For this model, the entries of 
the inverted lists are all the valid (i.e. alphanumeric terms as defined in [3]) textual 
sub-elements s of a tree node. For a sub-element s of a node n, four pieces of 
information are attached:  

− a link to the URI of the document <fileId>,  
− an index specifying the start and the end location of the node containing the sub-

element within the document <startNodeId, endNodeId>, 
− an index specifying the location of the sub-element within the document 

<wordOffset>, 
− a link toward its XML context p(n) <ctxtId>.  

2.2   Searching Scheme 

Most of the time, for large heterogeneous databases, one cannot assume that the user 
knows all of the structures – even in the very optimistic case, when all of the 
structural properties are known. Some straightforward approaches (such as the XPath 
search scheme [16]) may not be efficient in these cases. As the user cannot be aware 
of the complete XML structure of the data base due to its heterogeneity, efficient 
searching should involved exact and approximate search mechanisms.  

The main structure used in XML is a tree: It seems acceptable to express a search 
in term of tree-like requests and approximate matching. The matching tree process 
involves mainly elastic matching or editing distance [9, 10]. For [9], the complexity 
of matching two trees T1 and T2 is at least O(|T1|.|T2|) where |Ti| is the number of 
nodes in Ti. The complexity is much higher for common subtree search [10]. This 
complexity is far too high to let these approaches perform well for large hetero-
geneous databases with documents with a high number of elements (as nodes).  

We proposed [6], to focus on path matching rather than on tree matching – in a 
similar way with the XML fragment approach [14]. The request should be expressed 
as a set of path p(r) that is matched with the set of sub-path p(n) in the document tree. 
This breaks the algorithmic complexity and seems to better match the end-user needs: 
most of the data searches involve a node and its inherited sequence of elements rather 
than a full tree of elements. This ‘low-level’ matching only manage subpath similarity 
search with conditions on the elements and attributes matching. This process is used 
to design a more higher-level request language: a full request is a tree of low-level 
matching goals (as leafs) with set operators as nodes. These operators are used to 
merge leaf results. The whole tree is evaluated to provide a set of ranked answers. 
The operators are classical set operators (intersection, union, difference) or dedicated 
fuzzy merging processors. 
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Approximate Path Search. Let R be a low-level request, expressed as a path goal pR, 
with conditions or constraints to be fulfilled on the attributes and attributes values. 
We investigate the similarity between a pR (coding a path with constraints) and pi

D  (a 
root/../terminal(r) path of the tree TD associated to an index document D) as follow:  

σ (pR , pi
D) = 1/(1+ δL (pR, pi

D) ) (2) 

where δL is a dedicated editing distance (see [11]).  
The search complexity is O(l(pR).deep(TD).| { pi

D } |)  with |{ pi
D }| the size of the 

set { pi
D } (i.e. the number of different paths in D, starting at the root and leading to 

the last element of the pR request – terminal(r) ), l(p) the length of the path p and 
deep(T) the deepest level of T. This complexity remains acceptable for this 
application as 99% of the XML documents have fewer than 8 levels and their average 
depth is 4 [13]. We designed [6] an editing pseudo-distance using a customised cost 
matrix to compute the match between a path pi

D and the request path pR. This scheme, 
also known as modified Levenshtein distance, computes a minimal sequence of 
elementary transformation to get from pi

D to pR . The elementary transformations are:  

− Substitution: a node n in pi
D is replaced by a node n’ for a cost Csubst( n, n’), 

− Deletion: a node n in pi
D is deleted for a cost Cdel(n), 

− Insertion: a node n is inserted in pi
D for a cost Cins(n). 

For a sequence Seq(pi
D, pR) of elementary operations, the global cost GC(Seq(pi

D, pR)) 
is computed as the sum of the costs of elementary operations. The Wagner&Fisher 
algorithm [12] computes the best Seq(pi

D, pR) (i.e. minimizes GC() cost) with a 
complexity of O(length(pi

D) * length(pR)) as stated earlier. Let  

δL(pR , pi
D,)  = Mink GC(Seqk(p

R, pi
D)) . (3) 

Given  pR and  pi
D, the value for σ( pR , pi

D) _ 0 when the number of mismatching 
nodes and attribute conditions between pR and  pi

D increases. For a perfect match  
σ( pR , pi

D) = 1, i.e. all the elements and the conditions on attributes from the request 
pR match correspondent XML elements in  pi

D . 

2.3   Query Language 

Complex requests are built using the low-level request pR described above and 
merging operators (boolean or specialized operators). Mainly a complex request is a 
tree of pR requests as leafs. Each node supports an operator performing the merging of 
the descendant results. Currently, the following merging operators are implemented in 
the system for the low-levels management: 

− or, and: n-booleans or n-set. (or pR pR’) merges the set of solutions for pR and pR’. 
(and pR pR’) selects only the answers belonging to both answer sets. 

− without: this operator can be used to remove solutions from a set. For instance, 
(without pR pR’) delivers the set of solutions for pR minus the solutions for pR’. 

− seq: merges some of the inverted list to provides a simple sequence management. 
For instance, (seq warning * error) express the search of a sequence of texts items. 

− same+: should be related to the or operator. The or operator is a simple set 
merging operator, whereas ‘same+’ is a dedicated operator that takes into account 
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the number and the discriminating power of the retrieved terms/elements in the 
collection. We used a dedicated (see below) TFIDF-like function for this purpose 
(TFIDF stands for Term Frequency / Inverse Document Frequency, see [18]).  

− in: express a contextual relation (same = the pR have the same path, in = inside 
elements with the specified path),  

− in+: add structural matching information to the set of solutions. It performs a 
weighted linear aggregation between the conditions on structure and the set of 
solutions. 

− filter: this is a binary set operator selecting from the second set received as 
argument all the elements coming from document trees containing at least one 
relevant answer in the first set. The relevance of a returned element is computed as 
the arithmetic average between its relevance in the second set and the weight 
associated with the most relevant answer of the same document in the first set.  

The system analysis a request R and produce a set of weighted results. Let  
r(R) = { (ei,vi) } the set of weighted results produced by the system, where ei is a an 
element of the result and vi ∈[0..1] a weight showing the relevance of the returned 
element to the request.  

Let R be a complex request, or a simple (low level) pR request. The similarity 
computation for a complex request involves modifications of the relevance associated 
with a result element and is performed recursively starting at the leafs:  

r( or (R0 ,…Rn) ) = { (ei,vi ) } with )( k
k

i vMaxv =  where )(),( j

n

j
ki Rrve ∈  ; 

r( and (R0 ,…Rn) ) = { (ei,vi ) } with )( k
k

i vMinv =  where  )(),( j

n

j
ki Rrve ∈  ; 

r( without (R0 , R1) ) = { (ei,vi ) } where                                 and )(),( 1Rrve ii ∉ ;  

and )(),( 1
1 Rrve ii ∈  ; 

r( seq (M0 ,…Mn) ) = { (ei,vi ) }, vi = 1 if  M0..Mn occurs in sequence and belongs to 

the same context/leaf, else 0. 

r( in (path , R0 ,…Rn)) = { (ei,vi ) } with vi =Min{
k

Min  (vk ), (path, p(ei ))} where  

 )(),( j

n

j
ki Rrve ∈ ;  p(e) the xml context of element e ; and Δ (path, p(e))=1 if 

 path==p(e), 0 if not; 

( in+ (path, R0,…Rn)) = { (ei,vi ) } with )()1())(,( k
k

ii vMineppathv ⋅−+Δ⋅= ββ   

where )(),( j

n

j
ki Rrve ∈  ; Δ (path, p(e)) = σ (path, p(e)) the structural similarity  

between the two XML contexts (section 2.2); and ∈[0..1] a parameter used to 

emphasise the importance of the structural versus textual content matching ; 

)(),( 0Rrve ii ∈
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r( same+ (R0 ,…Rn)) = { (ei,vi ) } with ⋅=
k kki vv .λτ  where )(),( j

n

j
ki Rrve ∈  ,  

λk is a TFIDF-like weighting factor specifying the discriminating power of a result 

element (ei,vk ) in the collection : λk = 1 – log( (1+ ND(ei,vk )) / (1+ ND) ) ; where 

ND(ei,vk)  is the number of documents in which (ei,vk ) is occuring ;  N
D the total number 

of documents in the collection ; and  a normalization constant  = 1 / k (λk ) ; 

Let eD be a result element descendant of document D. 

r( filter (R0, R1)) = { (ei
D, vi ) } with 2/))(( 01

j
j

ii vMaxvv +=  where:   

)(),( 1
1 Rrve i

D
iiD ∈∀∀  and )(),( 0

0 Rrve j
D
jj ∈∀ . 

3   INEX 2005 Experience 

The retrieval task we are addressing at INEX 2005 is defined as the ad-hoc retrieval 
of XML elements. This involves the searching of a static set of documents using a 
new set of topics [1]. We will further present several characteristics of the test 
collection and of the topics used in INEX 2005 ad-hoc task. Next we will present how 
we tuned the SIRIUS retrieval approach for the CAS, CO and  CO+S tasks. 

3.1   INEX Ad-Hoc Collection  

The inex-1.8 document collection contains 16819 articles taken from 24 IEEE 
Computer Society journals, covering the period of 1995-2004. The total size of the 
source files in their canonical form is about 750 MB. The collection contains 141 
different tag-names composing 7948 unique XML contexts by ignoring the attributes 
and the attributes values. The maximum length of an index path is 20, while the 
average length is 8. These statistics are computed from the viewpoint of the retrieval 
system. That is, we use the XML tag equivalence classes (section 3.5). Also, the 
XML contexts associated to empty elements or containing only stop words do not 
count in our statistics. 

3.2   INEX 2005 Topics  

For the ad-hoc track of the INEX 2005 campaign a total of 40 CO and 47 CAS topics 
were selected by the organizers. CO (Content Only) topics contain just search terms, 
and optionally, an additional structured (+S) query specified in NEXI [3]. CAS 
queries (Fig. 1) are topic statements that contain explicit references to the XML 
 

//article[about(.//bb, Baeza-Yates) and about(.//sec , string matching)]
            //sec[about(., approximate algorithm)]

 

Fig. 1. CAS topic 280 expressed in NEXI language [3] 
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structure, and explicitly specify the contexts of the user’s interest (e.g. target 
elements) and/or the context of certain search concepts (e.g. containment conditions). 

3.3   Translating INEX 2005 Topics to SIRIUS Query Language 

We use automatic transformation of the INEX 2005 topics expressed in NEXI [3] to 
SIRIUS [6] recursive query language.  

To translate CO topics we use the same+ (for textual content), seq (for strict phrase 
matching) and without (for “–“ sign) operators (Section 2.3) in a straight forward 
way. The “+” sign and the numerical expressions are ignored.  

For CAS topics, we have two cases: simple queries of the form //A[B] and 
complex queries of the form //A[B]//C[D]. For the simple type queries, the translation 
process is based on the in+ operator (Section 2.3) (Fig. 2).  

//article[ about(.//bb, Baeza-Yates) (in+ [/article/bb/] (same+ (seq Baeza Yates))) 

Fig. 2. Translating CAS topic 277 to SIRIUS query language 

For translating complex queries of the form //A[B]//C[D] (Fig. 3), we introduce a 
new filter operator aiming to solve element containment relationships (Section 2.3). 
However, for all the complex CAS and CO+S topics, the ancestor //A specified in the 
structural path is the article element. Therefore, only document D level containment 
conditions are checked in the current implementation of the operator. 

( filter  ( and  ( in+   [/article/bb/]    ( same+   ( seq  Baeza Yates ) ) )
      ( in+   [/article/sec/]   ( same+   string  matching ) ) )

                           ( in+  [/article/sec/]  ( same+   approximate  algorithm ) ) )
 

Fig. 3. CAS topic 280 (Fig. 1) translated to SIRIUS query language 

3.4   Indexing the INEX 2005 Ad-Hoc Collection 

The collection is pre-processed by removing the volume.xml files and transforming all 
the XML documents in their canonical form1. At indexing time, the least significant 
words are eliminated using a stop list. The terms are stemmed using the Porter 
algorithm [17]. We index only ALPHANUMERIC words as defined in [3] (like iso-
8601).  We did not index numbers, the attributes, the attributes values, and empty 
XML elements. This allowed important performance gains both in indexing and 
querying time as well as disk space savings. The index model (section 2.1) was 
implemented using BTrees structures from Berkeley DB2 library. The indexing time 
on a PIV 2.4GH processor with 1.5GB of RAM for the inex-1.8 IEEE collection in its 

                                                           
1 Canonical XML Processor, http://www.elcel.com/products/xmlcanon.html . 
2 http://www.sleepycat.com/ 
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canonical form (~750MB) was about 60 min and showed a quasi linear evolution. The 
index size is about 1.28 times the size of the initial collection.  

3.5   Structure Approximate Match for INEX 

Structural Equivalence Classes. We create structural equivalence classes for the 
tags defined as interchangeable in a request: Paragraphs, Sections, Lists, and 
Headings in conformance with [4]. 

Weighting Scheme for Modelling Ancestor-Descendant Relationships. NEXI langu-
age [3] specifies a path through the XML tree as a sequence of nodes. Furthermore, 
the only relationship allowed between nodes in a path is the descendant relation. 
Therefore the XML path expressed in the request is interpreted as a subsequence of an 
indexed path, where a subsequence need not consist of contiguous nodes. 

This is not suited for the weighting scheme allowing (slight) mismatch errors 
between the structural query and the indexed XML paths implemented in SIRIUS [6]. 
The ancestor-descendant relationship is penalized by the SIRIUS weighting scheme 
relative to a parent-child relationship. Therefore we relax the weights of the path 
editing distance in order to allow node deletions in the indexed paths without any 
penalty Cdel(n)=0. To illustrate this mechanism we show in Fig. 4 the distances 
between the path requested in topic 277 (Fig. 2) searching works citing Baeza-Yates 
and several indexed path retrieved by SIRIUS using the new weighting scheme. 

 

δL ( /article/bm/bib/bibl/bb/au/snm,          //article//bb )     =  0 

δL ( /article/bm/app/bib/bibl/bb/au/snm,   //article//bb )     =  0 

δL ( /article/fm/au/snm,                             // article//bb )     =  1 

Fig. 4. Example of distances between the indexed path pi
D  and the request path pR 

In the first two cases the request path pR is a subsequence of the retrieved paths pi
D and 

therefore the editing distance is 0 independently of the length of the two index paths. In 
the last case, (Baeza-Yates beeing the author of the article), the editing distance is 1 
highlighting the mismatch of the requested bb node from the indexed path.  

The weighting scheme relates to an end user having precise but incomplete 
information about the xml tags of the indexed collection and about their ancestor-
descendant relationships. It takes into account the order of occurrence of the matched 
nodes and the number of nodes with no matching in the request. It heavily penalizes 
any mismatch relatively to the information provided by the user but it is forgiving 
with mismatches/extra information extracted from the indexed paths.  

4   SIRIUS Experiments 

In all the submitted runs we use the same basic retrieval approach, namely: i) the xml 
elements directly containing the research terms are considered as independent and the 
only valid units of retrieval; ii) IDF-like weighting for the leaf nodes containing the 
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researched terms using the same+ operator; iii) modified editing distance on XML 
paths for matching the structural constraints (in+ operator), and iv) weighted linear 
aggregation for content and structure matching scores.  

Strict Sequence Matching Runs. We used a strict seq operator for phrase matching 
inside the same+ operator – where strict stands for all the words appearing in 
sequence in the textual content (ignoring the stop list words) of the same XML node.  

Flexible Sequence Matching Runs. We implemented a relaxed sequence search 
based only on the same+ operator. These runs rank as best results the XML elements 
that contain all the researched terms without taking into account their order of 
occurrence. XML elements that contain part of the research terms are also retrieved 
and ranked based on the number and the discriminating power of the enclosed terms.  

4.1   SIRIUS CAS Runs 

CAS queries are topic statements that contain two kinds of structural constraints: where 
to look (support elements), and what elements to return (target elements) [1]. When 
implementing a VVCAS strategy, the structural constraints in both the target elements 
and the support elements are interpreted as vague using the in+ operator. We submitted 
2 official (1. VVCAS_contentWeight08_structureWeight02 and 2. VVCAS_content 
Weight05_structureWeight05) and 2 additional runs (3. VVCAS_SEQ and 4. VVCAS_ 
SAMEPLUS ) within the CAS ad-hoc task using the VVCAS strategy and automatic 
query translation . 

All the results described in this paper use the inex-1.8 collection, which is the 
official 2005 collection. However, due to a misunderstanding, the official VVCAS 
runs (1 & 2) were obtained with the inex-1.6 version of the collection. The first 
official submission emphasises the importance of the textual content matching score 
versus the structural matching using the  parameter set to 0.2 in the in+ operator. 
The second official submission uses equal weights for merging the structural and 
content matching scores. Additional run 3 is equivalent with the second official 
submission but is obtained using the inex-1.8 version of the IEEE collection. For 
additional run 4 we use a relaxed matching for phrase search based on the same+ 
operator, using =0.5 and the inex-1.8 collection. 

We report here the system-oriented and user-oriented official INEX 2005 evaluation 
measures: the effort-precision/gain-recall (ep/gr) metric, Extended Q and R metric, 
respectively the normalized extended cumulated gain (nxCG) metric for all the 
submitted VVCAS runs. Details of the evaluation metrics can be found in [2]. 

Using the Structural Information. The objective of our study was to determine to 
what extent the structural hints should be taken into account when implementing a 
VVCAS strategy. For the two official runs (1, 2) we assigned different weights 
(within the in+ operator - Section 2.3) to merge the content and structure relevance 
scores, i.e.  =0.2 and =0.5. The coefficients used were not discriminate enough to 
highlight important differences in the ranking of the final set of results. However, we 
may observe that the run that equally weighted the content and structural matching 
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Table 1. SIRIUS VVCAS Runs (1, 2 official runs;  3, 4 additional runs) 

 

scores (2nd official run) outperform in average the one biased towards content matc-
hing (1st official run) (see table 1). This is true for all of the INEX 2005 evaluation 
measures (official and additional) and this independently of the quantization function 
used. This indicates (usual disclaimers apply) that the structural hints, and jointly, the 
modified editing distance on the XML paths raises the system retrieval performances. 
To support this hypothesis we conducted experiments in which we completely 
ignored the explicit information provided by the users (setting  =0.0). The gain 
obtained between the runs using the explicit structural information and the ones that 
completely ignored it was of 6.28% for the flexible sequence search strategy and of 
8,7% for the strict sequence search strategy on the MAep measure calculated with a 
strict quantization function. 

Sequence Search Strategy. SIRIUS official VVCAS runs have a high effort/pre-
cision for low values of gain/recall (Table 1). This behaviour is due to the fact that the 
runs used strict constraints for phrase searching and the topic set was rich (7 among 
the 10 assessed topics used sequence search) in this kind of hints. The restrictive 
interpretation of the seq operator improved the system precision for the first ranked 
results. The SIRIUS VVCAS official runs are ranked several times in the first top ten 
runs for the first 10-25 retrieved results. This fact is important because these results 
are the most probably to be browsed by an end user. In the same time, this behaviour 
has penalized the system overall quality performance. One explanation is that the 
system stops to return elements when running out of good answers. This has 
important implications, as the system is not increasing its information gain until 
reaching the limit of 1500 returned answers by returning imprecise/less perfect 
results. This hypothesis is also supported by the system behaviour relatively to the 
strict and generalized quantization functions. Our runs were better ranked by all the 
official evaluation measures when a strict quantization function was used.  

We evaluated an additional run (4) allowing a flexible phrase search based only on 
the same+ operator. With this approach , we loose 32% of the system precision for 
the first 15 retrieved results versus the strict sequence search strategy, but we obtain 
an obviously improved overall effort-precision/gain-recall curve (gain of 14.57% on 
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the MAep (overlap=off, quant=strict)). We could further improve these results by 
defining a new operator combining same+ ranking with seq ranking strategies. 

VVCAS Task Rankings. The evaluation results are rather encouraging. In particular, 
the best values reported for nxCG@{10,25,50} (overlap=off, quant=strict) could be 
ranked unofficially between the first three positions (from 28 submissions). The best 
overall performance is obtained by the flexible matching sequence strategy with 
MAep=0.0558 (overlap=off, quant= strict) that is equivalent with a non official 5th  
place. 

4.2   SIRIUS CO, COS Runs 

CO.Thorough & COS.Thorough. For these strategies we used a similar approach as 
for the VVCAS task. The CO topics were automatically translated in SIRIUS query 
language and the xml elements directly containing terms relevant to the requests were 
retuned (usually the leafs). We present hereinafter the evaluation results obtained for 
two different content matching strategies allowing a strict (SEQ) and flexible 
(SAMEPLUS) phrase search. 

Table 2. SIRIUS CO.Thorough Runs 

 

We obtained particularly good results for both the CO.Thorough and 
COS.Thorough tasks on the ep/gr and nxCG metric with a strict quantization function 
(i.e. for the CO.Thorough we obtained an unofficial 3rd place for the SAMEPLUS run 
with MAep=0.0428; the results reported (Table 2) for nxCG@{10, 25, 50} for the 
SAMEPLUS run could be ranked in the top 4th places from the 55 submitted runs for 
the CO.Thorough task).  

Table 3. SIRIUS COS.Thorough Runs 
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For the COS.Thorough runs we used a vague strategy (in+ operator) for 
interpreting the structural constrains as for the VVCAS runs. All the result reported 
(Table 3) for the two runs at nxCG@{25, 50} and MAep calculated with a strict 
quantization function could be ranked unofficially on the first and the second place 
from the 33 submitted runs. 

CO.Focussed & COS.Focussed. The aim of the Focussed retrieval strategy is to find 
the most exhaustive and specific element in a path. In other words, the result list 
should not contain any overlapping elements. In our approach we consider the XML 
element containing a researched term as the basic and implicitly valid unit of retrieval 
regardless of its size. This approach implements “naturally” a focused strategy as it 
returns the most focused elements containing the research terms. However, the highly 
mixed nature of the INEX ad-hoc collection and the fact that the distribution of 
elements is heavily skewed towards short elements such as italics [5], may lead to 
cases where nested/overlapping XML elements could be returned as valid results. For 
instance, the p (paragraph) and the it (italicized text) elements of the excerpt from 
Fig. 5 will be retrieved by a request aiming to extract relevant elements for the 
“query” term.  

<p align="left" ind="none">
The <it>query optimizer</it>, the query engine's central component, determines the best service
execution plan based on QoWS, service ratings, and matching degrees.

</p>

 

Fig. 5. Mixed XML element content with italicized text (i.e. one of the SIRIUS ‘relevant‘ 
answer for CAS topic 244) 

Our official VVCAS runs (1, 2) have a set-overlap3 ranging between 0.002 – 0.004 
for the first 20 retrieved results and 0.014-0.015 at 1500 results. In order to remove 
the overlapping elements we implemented a two phase process: i) we recalculate the 
relevance of the elements in the answer list in order to reflect the relevance of their 
descendants elements (if any); and ii) we select non overlapping elements from the 
list. The weights are calculated recursively starting at the leafs to the highest non 
overlapping nodes composing the answer by using two strategies: i) max - the max 
relevance value is propagated recursively to the highest non overlapping elements; ii) 
and avg - the relevance of a node is computed as the arithmetic average of all its 
descendant relevant nodes including its own relevance. To select the non overlapping 
elements we compared several strategies: i) HA - the highest ancestor from the answer 
list is selected; ii) MR - the most relevant answer is selected recursively from the 
answer list as long as it not overlaps with an already selected element – i.e. for 
equally relevant overlapping elements we choose either the descendant (MRD) or the 
ancestor (MRA).  

                                                           
3 Set overlap measures the percentage of elements that either contain or are contained by at 

least one or other element in the set. 
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We experimented with different settings for computing the elements relevance and 
selecting the non overlapping answers for the CO.Focussed and COS.Focussed tasks. 
In outmost all the experiments the runs based on the same+ operator outperformed 
the runs based on the seq operator, even at low recall values. Therefore, we rapport 
here the best performing runs based only on the same+ operator (SAMEPLUSmaxHA, 
SAMEPLUSmaxMRD and SAMEPLUSavgMRD) for the CO.Focussed (Table 4) and 
the COS.Focussed (Table 5) tasks. The main experimental observation is that for the 
generalized quantization, largest XML elements are preferable (HA) while the strict 
quantization function demands for more focussed XML elements (MRD),   

Table 4. SIRIUS CO.Focussed Runs: Different Strategies for Removing Overlap  

 

The system is well ranked for both the strict and generalised quantization functions 
and in both the CO.Focussed and COS.Focussed tasks. For the CO. Focussed task we 
obtain MAep values (Table 4) equivalent with an unofficial 5th and 8th place (from 44 
submissions) for a strict and respectively generalized quantization function. We are 
better ranked on the COS.Focussed task were we obtain MAep values (Table 5) 
equivalent with a 2nd and 5th place (from 27 submissions) for strict and respectively 
generalised quantization. Also the values reported for the nxCG@{10, 25, 50} with 
strict quantisation for both the CO.Focussed and COS.Focussed tasks could be ranked 
in the top 10 results. These results may be explained by the fact that in the approach 
taken for the INEX 2005 ad-hoc task we return mostly leaf elements (i.e. paragraphs) 
which are shown to be effective retrieval units for the focussed strategy [19].  

Table 5. SIRIUS COS.Focussed Runs: Different Strategies for Removing Overlap 
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5   Conclusions 

We evaluated the retrieval performances of a lightweight XML indexing and 
approximate search scheme currently implemented in the SIRIUS XML IR system  
[6, 7, 8]. At INEX 2005, SIRIUS retrieves relevant XML elements by approximate 
matching both the content and the structure of the XML documents. A modified 
weighted editing distance on XML paths is used to approximately match the 
documents structure while strict and fuzzy searching based on the IDF of the 
researched terms are used for content matching.  

Our experiments show that taking into account the structural constraints improves the 
retrieval performances of the system and jointly shows the effectiveness of 
the proposed weighted editing distance on XML paths for this task. They also show that 
the approximate search inside XML elements implemented using our same+ operator 
improve the overall performance of the ranking, compared to a more restrictive sequence 
search (seq operator), except for low recall values. The complementarities of the two 
operators call for the design of a new matching operator based on their combination to 
further improve the retrieval performance of our system.  

While designing our lightweight indexing and XML approximate search system we 
have put forward the performance and the implementation simplicity. SIRIUS 
structural match is well adapted for managing mismatches in writing constraints on 
XML paths involving complex conditions on attributes and attributes values [6]. 
Unfortunately, this was not experimented in INEX 2005 campaign. SIRIUS was 
designed to retrieve relevant XML documents by highlighting and maintaining the 
relevant fragments in the document order (approach explored by the INEX 
CO.FetchBrowse and COS.FetchBrowse tasks). For this year, at the ad-hoc task we 
evaluated only a subset of its functionalities and proved its ability of retrieving 
relevant non overlapping XML elements within the CO.Focussed and COS.Focussed 
tasks. Even if SIRIUS is not able to compute dynamically the most appropriate size 
for a returned element, it obtained average and good quality results in the range of the 
10-25-50 first ranked answers for all the tasks in which it was evaluated. This is quite 
encouraging since first ranked elements are the ones end users will most probably 
browse. 

Future research work will include: further evaluations for the FetchBrowse 
strategy using the best performing Focussed runs; new experiments and evalua-
tions involving semantic enrichment of the requests (at both xml tag and query 
term levels), index models better suited for the approximate search scheme, and 
new matching operators. 
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Abstract. We present a Machine Learning based ranking model which
can automatically learn its parameters using a training set of annotated
examples composed of queries and relevance judgments on a subset of the
document elements. Our model improves the performance of a baseline
Information Retrieval system by optimizing a ranking loss criterion and
combining scores computed from doxels and from their local structural
context. We analyze the performance of our algorithm on CO-Focussed
and CO-Thourough tasks and compare it to the baseline model which is
an adaptation of Okapi to Structured Information Retrieval.

1 Introduction

Different studies and developments have been recently carried out on ranking al-
gorithms in the machine learning community. In the field of textual documents,
they have been successfully used to combine features or preferences relations
in tasks such as meta search [1] [2] [3], passage classification, automatic sum-
marization [4] and recently for the combination of different sources of evidence
in Information Retrieval (IR) [5]. One of the challenges of this paradigm is to
reduce the complexity of the algorithms which is in the general case quadratic
in the number of samples. This is why most real data applications of ranking are
based on two-classes problems. Nevertheless, some linear methods has been pro-
posed [3] [4] and under some conditions, fast rates of convergence are achieved
with this class of methods [6].

Ranking algorithms work by combining features which characterize the data
elements to be ranked. In our case, these features will depend on the doxel itself
and on its structural context. Ranking algorithms will learn to combine these
different features in an optimal way according to a specific loss function using
a set of examples. It is hoped that ranking algorithms may help to improve the
performance of existing techniques.

The paper is organized as follows, in section 2 we present the ranking model,
in section 3 we show how we adapted it to CO-Focussed and CO-Thorough
tasks. In section 4 we comment the results reached by our model and compare
it to a baseline Okapi method adapted for Structured Information Retrieval
(SIR).

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 336–343, 2006.
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2 Ranking Model

We present in this section a general model of ranking which can be adapted to
IR or SIR. The idea of the ranking algorithms proposed in the machine learning
community is to learn a total order on a set X , which allows to compare any
element pair in this set. Given this total order, we are able to order any subset
of X in a ranking list. For instance in IR, X can be the set of couples (document,
query), and the total order is the natural order on the document scores.

As for any machine learning technique, one needs a training set of labeled ex-
amples in order to learn how to rank. This training set will consist in ordered pairs
of examples. This will provide a partial order on the elements of X . The ranking
algorithm will use this information to learn a total order on the elements of X and
after that will allow to rank new elements. For plain IR, the partial ordering may
be provided by human assessments on different documents for a given query.

2.1 Notations

Let X be a set of elements with a partial order ≺ defined on it. This means that
some of the element pairs in X may be compared according to the ≺ relation.
For Structured Information retrieval X will be the set of couples (doxel, query)
for all doxels and queries in the document collection. This set is partially ordered
according to the existing relevance judgments for each query.

2.2 Ranking

Let f be a function from X to the set of real numbers. We can associate a total
order ≺T to f such that:

x ≺T x′ ⇔ f(x) < f(x′) . (1)

Clearly, learning the f function is the same as learning the total order. In the
following, we will extend the partial order ≺ to a total order ≺T , so we will use
the same notation for both relations.

An element of X will be represented by a real vector of features:

x = (x1, x2, ..., xd).

In our case, the features will be local scores computed on different contextual
elements of a doxel. In the following, f will be a linear combination of x’s features:

fω(x) =
d∑

j=1

ωjxj (2)

where ω = (ω1, ω2, ..., ωd) are the parameters of the combination to be learned.

Ranking loss. fω is said to respect x ≺ x′ if fω(x) < fω(x′). In this case,
couple (x, x′) is said to be well ordered by fω. The ranking loss [3] measures how
much fω respects ≺.



338 J.-N. Vittaut and P. Gallinari

By definition, the ranking loss measures the number of mis-ordered couples
in X 2:

R(X , ω) =
∑

(x,x′)∈X 2

x≺x′

χ(x, x′) (3)

where χ(x, x′) = 1 if fω(x) > fω(x′) and 0 otherwise.
Ranking aims at learning ω for minimizing (3).

Exponential loss. In practice, this expression is not very useful since χ is not
differentiable, ranking algorithms use to optimize another loss criterion called
the exponential loss:

Re(X , ω) =
∑

(x,x′)∈X 2

x≺x′

efω(x)−fω(x′). (4)

If is straightforward that R(X , ω) ≤ Re(X , ω). (4) is differentiable and convex,
and then can be minimized using standard optimization techniques. Minimizing
(4) will allow to minimize R(X , ω).

We can compute a gradient descent. The components of the gradient of Re

are:
∂Re

∂ωk
(X , ω) =

∑
(x,x′)∈X 2

x≺x′

(xk − x′
k)efω(x)−fω(x′). (5)

With no more hypothesis, the computation of (5) is in O(|X |2).

3 Application to CO Tasks

3.1 Definitions

Let denote D is the set of doxels for all the documents in the collection and Q
the set of CO queries. X = Q × D is the set of elements we want to order.

We suppose that there exists a partial order ≺ on X = Q×D, this partial order
will reflect for some queries, the evidence we have about preferences between
doxels provided via manual assessments. Note that these relevance assessments
are only needed for a few queries and doxels in the collection. We consider here
the task which consists in producing a ranked list of doxels which answer the
query q ∈ Q. For that, we will train the ranking model to learn a total strict
order on X .

3.2 Vector Representation

Each element x ∈ X is represented by a vector (x1, x2, ..., xd) were xi represents
some feature which could be useful to order elements of X . Let denote L the
set of doxel types, which are defined according to the DTD of the document
collection: article, abstract, sections, paragraphs, lists...
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We used the following combination:

fw(x) = ωl
1 + ωl

2Okapi(x) + ωl
3Okapi(parent(x)) + ωl

4Okapi(document(x))

where l is the node type of x and Okapi is the SIR adapted Okapi model [7]
described in [8]. This adaptation consists in using doxels rather than documents
for computing the term frequencies, and using as normalization factor for each
doxel, the mean size of the doxels with the same node type.

This combination take into account the information provided by the context
of the doxel and the structural information given by the node type of the doxel.

This combination leads to the following vector representation:

x =
(
(xl1

1 , xl1
2 , xl1

3 , xl1
4 ), (xl2

1 , xl2
2 , xl2

3 , xl2
4 ), ..., (xl|L|

1 , x
l|L|
2 , x

l|L|
3 , x

l|L|
4 )
)

where |L| is the number of different doxel types in the collection.
In the above expression all vector components of the form (xli

1 , xli
2 , xli

3 , xli
4 )

are equal to (0, 0, 0, 0) except for one where li is the doxel type of x which is
equal to (1, Okapi(x), Okapi(parent(x)), Okapi(document(x))).

3.3 Reduction of Complexity

In this section, we use some properties of SIR in order to decrease the complexity
of the computation of (4) and (5).

Queries. Comparing elements from different queries has no sense. We can define
a partition X =

⋃
q∈Q

Xq, where

Xq = {x = (d, q′) ∈ X/q′ = q}

and we can rewrite (4):

Re(X , ω) =
∑
q∈Q

⎧⎪⎪⎨
⎪⎪⎩

∑
(x,x′)∈Xq×Xq

x≺x′

efω(x)e−fω(x′)

⎫⎪⎪⎬
⎪⎪⎭ . (6)

Assessments. For each subset Xq, the preferences among doxels are expressed
according to a several discrete dimensions. We have:

- an information of exhaustivity, which measures how much a doxel answers
the totality of an information need (0 not exhaustive, ..., 3 fully exhaustive)

- an information of specificity, which measures how much a doxel answers only
the information need (0 not specific, ..., 3 means fully specific)

There is no preference between doxels sharing the same value of exhaustivity
and specificity.
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E3S3

E3S2

E2S3

E3S1

E2S2

E1S3

E2S1

E1S2

E1S1 E0S0

Fig. 1. Graph representing the order between elements for a given query, according to
the two dimensional discrete scale of INEX. Doxels labeled E3S3 must be the highest
ranked, and doxels labeled E0S0 the lowest ranked.

An assessment is a couple (exhaustivity, specificity). Let denote A the set of
assessments and A(x) the assessment of element x. We can define a partition
Xq =

⋃
a∈A

X a
q , where

X a
q = {x ∈ Xq/A(x) = a}.

We can rewrite (6):

Re(X , ω) =
∑
q∈Q

∑
a∈A

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎛
⎝∑

x∈Xa
q

efω(x)

⎞
⎠
⎛
⎜⎜⎜⎝
∑
b∈A

X b
q≺Xa

q

∑
x∈X b

q

e−fω(x)

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (7)

where X b
q ≺ X a

q means that the assessments of the elements of X a
q are better than

those of X b
q . An possible order between assessments is represented in figure 1.

The complexity for computing this expression is O(K · |Q| · |X |) whereas it is
O(|X |2) for (4) where K is the number of sets in the partition of X . The worst
case occurs when K = X .

3.4 Gradient Descent

Since (7) is convex, we can use a gradient descent technique to minimize it. The
components of the gradient has the following form:

∂Re

∂ωk
(X , ω) =

∑
q∈Q

∑
a∈A

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎛
⎝∑

x∈Xa
q

xkefω(x)

⎞
⎠
⎛
⎜⎜⎜⎝
∑
b∈A

X b
q ≺Xa

q

∑
x∈X b

q

e−fω(x)

⎞
⎟⎟⎟⎠

+

⎛
⎝∑

x∈Xa
q

efω(x)

⎞
⎠
⎛
⎜⎜⎜⎝
∑
b∈A

X b
q ≺Xa

q

∑
x∈X b

q

−xke−fω(x)

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (8)
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The complexity for computing the gradient is the same (O(K · |Q| · |X |)) as
that of (7).

4 Experiments

4.1 Learning Base

We used the series of topics and assessments from the INEX 2003 and 2004
collections as a learning base. We will comment the results on 2005 collection.

4.2 Filtering

In CO-Focussed task, overlapping doxels were not allowed. In order to suppress
all overlapping elements from the lists computed by the ranking algorithm, we
used a strategy which consists in removing all elements which are overlapping
with an element ranked higher in the list.

As for Okapi model, we used the same strategy exept that biggest doxels
like articles or bdy’s were not allowed in the final ranking list to reach better
performance.

4.3 Results

We comment the results obtained with the ncXG official metric with generalized
quantization which is more related to the ranking loss criterion and the different
levels of assessment we have used in our model.

CO-Focussed. We have plotted in figure 2 the evaluation of the lists produced
by the ranking algorithm and by the modified Okapi when overlap is not au-
thorized. We can see that the ranking algorithm performs better than Okapi. In
some parts of the plot, the difference between the two models is not large: this
is due to the post filtering of the lists. The ranked lists had not been optimized
for non overlapping doxels since there is no notion of overlap in the exponential
loss.

The table 1 shows that the ranking model is always better than its baseline
Okapi model, and that is quite good to retrieve the most informative doxels in
the begining of the list.

Table 1. Rank of Okapi and ranking models among all participant submissions using
MAncXG metric for CO-Focussed task

@1 @2 @3 @4 @5 @10 @15 @25 @50 @100 @500 @1000 @1500
Okapi 21 20 19 19 18 18 19 19 19 18 20 20 20
Ranking 1 1 1 1 2 7 11 13 15 14 10 14 13



342 J.-N. Vittaut and P. Gallinari

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

nx
C

G

rank%

ncXG (overlap=on,generalised) focused 2005

Ranking
Okapi

Fig. 2. Performance of ranking and Okapi models for CO-Focussed task evaluated with
the cumulated gain based metric ncXG
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Fig. 3. Performance of ranking and Okapi models for CO-Thorough task evaluated
with the cumulated gain based metric ncXG

CO-Thorough. Figure 3 show the evaluation of the lists produced by the
ranking algorithm and modified Okapi when overlap is authorized. We can see
that the ranking algorithm performs clearly better than Okapi and the difference
in performance is superior than in the Focussed task.
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Table 2. Rank of Okapi and ranking models among all participant submissions using
MAncXG metric for CO-Thorough task

@1 @2 @3 @4 @5 @10 @15 @25 @50 @100 @500 @1000 @1500
Okapi 26 22 26 26 26 31 34 37 38 38 35 32 32
Ranking 1 1 1 2 2 3 3 4 11 12 5 5 6

The table 2 shows that the ranking model is always better than its baseline
Okapi model, and that is quite good to retrieve the most informative doxels in
the begining of the list. This can be explained by the expression of the ranking loss
which penalize more a irrelevant doxel when it is located in the begining of the list.

5 Conclusion

We have described a new model for CO tasks which relies on a combination of
scores from the Okapi model and takes into account the document structure.
This score combination is learned from a training set by a ranking algorithm.

For both tasks, the ranking algorithm has been able to increase by a large
amount the performance of the baseline Okapi. Ranking methods thus appear as
a promising direction for improving SIR search engine performance. It remains
to perform tests with additional features (for example the scores of additional
IR systems).
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6. Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and scoring using empirical risk
minimization. In Auer, P., Meir, R., eds.: COLT. Volume 3559 of Lecture Notes in
Computer Science., Springer (2005) 1–15

7. Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at
TREC. In: Text REtrieval Conference. (1992) 21–30

8. Vittaut, J.N., Piwowarski, B., Gallinari, P.: An algebra for structured queries in
bayesian networks. In: Advances in XML Information Retrieval. Third Workshop
of the INitiative for the Evaluation of XML Retrieval. (2004)



Relevance Feedback for Structural Query
Expansion

Ralf Schenkel and Martin Theobald

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{schenkel, mtb}@mpi-inf.mpg.de

Abstract. Keyword-based queries are an important means to retrieve
information from XML collections with unknown or complex schemas.
Relevance Feedback integrates relevance information provided by a user
to enhance retrieval quality. For keyword-based XML queries, feedback
engines usually generate an expanded keyword query from the content
of elements marked as relevant or nonrelevant. This approach that is
inspired by text-based IR completely ignores the semistructured nature
of XML. This paper makes the important step from pure content-based
to structural feedback. It presents two independent approaches that in-
clude structural dimensions in a feedback-driven query evaluation: The
first approach reranks the result list of a keyword-based search engine,
using structural features derived from results with known relevance. The
second approach expands a keyword query into a full-fledged content-
and-structure query with weighted conditions.

1 Introduction and Motivation

XML has seen increasing importance recently to represent large amounts of
semistructured or textual information in digital libraries, intranets, or the Web,
so information retrieval on XML data is growing more and more important. XML
search engines employ the ranked retrieval paradigm for producing relevance-
ordered result lists rather than merely using XPath or XQuery for Boolean re-
trieval. An important subset of XML search engines uses keyword-based queries
[2, 7, 30], which is especially important for collections of documents with un-
known or highly heterogeneous schemas. However, simple keyword queries can-
not exploit the often rich annotations available in XML, so the results of an
initial query are often not very satisfying.

Relevance Feedback is an important way to enhance retrieval quality by in-
tegrating relevance information provided by a user. In XML retrieval, existing
feedback engines usually generate an expanded keyword query from the content
of elements marked as relevant or nonrelevant. This approach that is inspired by
text-based IR completely ignores the semistructured nature of XML.

This paper makes the important step from content-based to structural feed-
back. We present two independent approaches to exploit the structure of XML
with relevance feedback:

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 344–357, 2006.
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1. Using the feedback approach by Rocchio [20], we create new content and
structural features that are used to rerank the results of a keyword-based
engine, enabling structural feedback for engines that support only keyword-
based queries.

2. We extend the feedback approach by Robertson and Sparck-Jones [19] to
expand a keyword-based query into a possibly complex content-and-structure
query that specifies new constraints on the structure of results, in addition
to “standard” content-based query expansion. The resulting expanded query
has weighted structural and content constraints and can be fed into a full-
fledged XML search engine like our own TopX [26] Search Engine.

2 Related Work

Relevance feedback has already been considered for document retrieval for a
long time, starting with Rocchio’s query expansion algorithm [20]. Ruthven and
Lalmas [21] give an extensive overview about relevance feedback for unstructured
data, including the assessment of relevance feedback algorithms.

Relevance feedback in XML IR is not yet that popular. Of the few papers that
have considered it, most concentrate on query expansion based on the content
of elements with known relevance [4, 13, 25, 29]. Some of these focus on blind
(”pseudo”) feedback, others on feedback provided by users. Pan et al. [15] apply
user feedback to recompute similarities in the ontology used for query evaluation.

Even fewer papers have considered structural query expansion [8, 9, 14, 16, 17].
Mihajlovic̀ et al. [14, 16, 17] proposed deriving the relevance of an element from
its tag name, but could not show any significant gain in retrieval effective-
ness. Additionally, they considered hand-tuned structural features specific for
the INEX benchmark (e.g., the name of the journal to which an element’s doc-
ument belongs), but again without a significant positive effect. In a follow-up to
this work, Ramı́rez et al. [17] could show significant improvements with journal
names. In contrast, our general approach for exploiting feedback can be applied
with the INEX data, but does not rely on any INEX-specific things.

Hlaoua and Boughanem [8] consider common prefixes of relevant element’s
paths as additional query constraints, but don’t provide any experimental eval-
uation of their approach.

Gonçalvez et al. [5] use relevance feedback to construct a restricted class of
structured queries (namely field-term pairs) on structured bibliographic data,
using a Bayesian network for query evaluation. While they did not consider
XML, their overall approach is somewhat similar to our reranking framework
presented in Section 4.

The work of Hsu et al. [9] is closest to our approach. They use blind feedback
to expand a keyword-based query with structural constraints derived from a
neighborhood of elements that contain the keywords in the original query. In
contrast, our approach considers the whole document instead of only a fragment,
can generate constraints with negative weight, and integrates also content-based
constraints.
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3 Formal Model and Notation

3.1 Data Model

We consider a fixed corpus of D XML documents with their elements. For such
an element e, t(e) denotes its tag name and d(e) the document to which it
belongs.

The content c(e) of an element e is the set of all terms (after stopword removal
and optional stemming) in the textual content of the element itself and all its
descendants. For each term t and element e, we maintain a weight we(t). This can
be a binary weight (we(t) = 1 if the term occurs in e’s content and 0 otherwise),
a tf-idf style [12] or a BM25-based [1, 28] weight that captures the importance
of t in e’s content. The content c(d) of a document d is defined as the content
c(r) of its root element r.

We maintain a number of statistics about the occurrence of terms in docu-
ments and elements: The document frequency dft of a term t is the number of
documents in which the term appears in the content. Analogously, the element
frequency eft of a term t is the number of elements in which the term appears
in the content.

3.2 Queries and Relevance of Results

We use an extended version of INEX’s query language NEXI [27]. NEXI basically
corresponds to XPath restricted to the descendants-or-self and self axis
and extended by an IR-style about predicate to specify conditions that relevant
elements should fulfil. The wildcard symbol ’*’ matches any tag and can be
used to formulate keyword queries in NEXI. We extend NEXI with additional
weights for each content constraint. A typical extended NEXI query looks like
the following:
//article[about(.,"0.8*XML")//*[about(.//p,"0.4*IR -0.2*index")]

The result granularity of such a query are elements. We currently assume that
the relevance of an element with respect to a query is measured with the strict
quantization, i.e., an element is either relevant or nonrelevant.

3.3 Feedback Model

We consider a keyword query q = {q1, . . . , qp} with a set E = {e1, . . . , el} of
results with known relevance. i.e., elements for which a user has assigned an
exhaustivness value e(e) and a specificity value s(e). Using the strict quantiza-
tion, we say that an element e is relevant for the query if both e(e) and s(e)
are maximal, yielding a set E+ = {e+

1 , . . . , e+
R} of relevant elements and a set

E− = {e−1 , . . . , e−N} of nonrelevant elements.
Note that even though we consider only binary relevance, it is possible to

extend the mechanism presented here to approaches where relevance is measured
with a probability-like number between 0 and 1, for example by representing E+

and E− as probabilistic sets.



Relevance Feedback for Structural Query Expansion 347

4 Reranking Results of Keyword-Only Runs

Our first approach aims at identifying documents that contain relevant elements
and paths of relevant elements, in addition to standard content-based query
expansion. We first compute the results for a keyword query with an existing
keyword-based engine and ask a user for relevance feedback. Based on the user
input, we compute certain classes of features from elements with relevance feed-
back and select those that best discriminate relevant from nonrelevant results.
Using these features, we compute additional scores for element-feature-matches
for all remaining elements and rerank them by their combined score. This ap-
proach allows to evaluate certain classes of structural constraints with engines
that support only keyword-based queries.

For space restrictions we can only informally present our approach here; a
more detailed and formal description can be found in [23].

4.1 Features Used for Reranking

We derive the following classes of candidates for query expansion from an element
with known relevance:

– all terms of the element’s content together with their score (C features),
– tag-term pairs within the element’s document (D features), and
– features derived from the path of the element (P features).

The system can be extended with additional classes of features.

Content Features. Content-based feedback is widely used in standard IR and
has also made its way into XML retrieval [13, 25]. It expands the original query
with new, weighted keywords that are derived from the content of elements
with known relevance. As an example, consider the keyword query "multimedia
information" retrieval (this is topic 178 from the INEX topic collection).
From the feedback of a user, we may derive that elements that contain the terms
‘brightness’, ‘annotation’, or ’rgb’ are likely to be relevant, whereas elements with
‘hypermedia’ or ’authoring’ are often irrelevant.

Document Features. Unlike standard text retrieval where the unit of retrieval
are whole documents, XML retrieval focuses on retrieving parts of documents,
namely elements. Information in other parts of a document with a relevant el-
ement can help to characterize documents in which relevant elements occur.
A natural kind of such information is the content of other elements in such
documents.

As an example, consider again INEX topic 178 ("multimedia information"
retrieval). We may derive from user feedback that documents with the terms
‘pattern, analysis, machine, intelligence’ in the journal title (i.e., those from
the ’IEEE Transactions on Pattern Analysis and Machine Learing’) are likely
to contain relevant elements. The same may hold for documents that cite pa-
pers by Gorkani and Huang (who are co-authors of the central paper about the
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QBIC system), whereas documents that cite papers with the term ‘interface’ in
their title probably don’t contain relevant elements (as they probably deal with
interface issues in multimedia applications).

Other possible structural features include twigs, occurence of elements with
certain names in a document, or combination of path fragments with terms.
Further exploration of this diversity is subject to future work.

Path Features. Elements with certain tag names are more likely to be relevant
than elements with other tag names. As an example, a keyword query may
return entries from the index of a book or journal with high scores as they
often contain exactly the requested keywords, but such elements are usually
not relevant. Additionally, queries may prefer either large elements (such as
whole articles) or small elements (such as single paragraphs), but rarely both.
However, experiments show that tag names alone do not bear enough information
to enhance retrieval quality, but the whole path of a result element plays an
important role. As an example, the relevance of a paragraph may depend on
whether it is in the body of an article (with a path like /article/bdy/sec/p
from the root element), in the description of the vitae of the authors (with a
path like /article/bm/vt/p), or in the copyright statement of the journal (with
a path like /article/fm/cr/p).

As element tag names are too limited, but complete paths may be too strict,
we consider the following six classes of path fragments, with complete paths and
tag names being special cases:

– P1: prefixes of paths, e.g., article/#,/article/fm/#
– P2: infixes of paths, e.g., #/fm/#
– P3: subpaths of length 2, e.g., #/sec/p/#
– P4: paths with wildcards, e.g, #/bm/#/p/#
– P5: suffixes of paths, e.g., #/fig, #/article
– P6: full paths, e.g, /article/bdy/sec

Mihajlovic̀ et al. [14] used a variant of P5, namely tag names of result elements,
but did not see any improvement. In fact, only a combination of fragments from
several classes leads to enhancements in result quality. Experiments in [23] show
that the best results are yielded with a combination of P1, P3 and P4, whereas
using P5 or P6 alone actually reduced the quality of results below the baseline
without feedback.

4.2 Feature Weights and Selection

We compute the weight for all features using the standard Rocchio weight [20].
We tried several variations, including binary and weighted Rocchio weights, and
have yet to explore the whole space of solutions.

Among the (usually many) possible features, we choose the nc content fea-
tures and ns document features with highest absolute weights. If there are too
many with the same weight, we use the mutual information of the feature’s score
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distribution among the elements with known relevance and the relevance distri-
bution as a tie breaker. If there are no positive examples and mutual information
is zero for all features, we use the feature’s document frequency (the number of
documents in which this feature occurs) for tie breaking then, preferring features
that occur infrequently.

4.3 Reranking Results

For each element that occurs in the baseline run, we compute an additional
score for each feature class. The score for each feature class is computed in a
separate vector space where each dimension corresponds to a feature that occurs
in at least one element. The score of the element for this class is then computed
as the cosine of the vector with the selected features for this dimension and
the element’s feature vector. Each of the scores is normalized to the interval
[−1.0, 1.0]. The overall score of the element is then the sum of its score from the
baseline run and its additional scores.

This scoring model can easily integrate new dimensions for feedback beyond
content, path and document features, even if they use a completely different
model (like a probabilistic model). It only requires that the relevance of an
element to a new feedback dimension can be measured with a score between -1
and 1. It is simple to map typical score functions to this interval by normalization
and transformation. As an example, the transformation rule for a probability p,
0 ≤ p ≤ 1, is 2 · p − 1.

5 Generating Structural Queries from Feedback

Keyword-based queries are the best way to pose queries without knowledge of
the underlying schema of the data, but they cannot exploit the structure of
documents. As an example, consider the keyword query (query 230 from the
INEX benchmark [11]) +brain research +"differential geometry", asking
for applications of differential geometry in brain research. In relevant results,
”brain research” is usually the topic of the whole article, while ”differential
geometry” is typically the topic of a section. A query with constraints on both
content and structure would probably yield a lot more relevant results, but it
is impossible to formulate a query like the following without knowledge of the
underlying schema:
//article[about(.,brain research)]//sec[about(.,differential geometry)]

We studied the content-and-structure queries from INEX to find patterns that
are regularily used in such queries to describe relevant elements, in addition to
content conditions on the result element. A canonical example for such a query
is the following:
//article[about(.,"RDF") and about(//bib,"W3C")]//sec[about(.,"query")

and about(//par,"performance")]

This is a content-and-structure version of the simpler keyword query ”RDF
W3C query performane”. In contrast to the keyword query, the structured query



350 R. Schenkel and M. Theobald

specifies a tag (or, more generally, a set of tags) that relevant elements should
have (”I am interested in sections about ’query’”). Additionally, this query con-
tains constraints on the content of descendants of relevant elements (”sections
with a paragraph about ’performance’”), the content of ancestors (”sections in
articles about ’RDF’”), and the content of descendants of ancestors (”sections
in articles that cite a paper from the ’W3C’”).

As such a content-and-structure query specifies much more precisely the con-
ditions that relevant elements must satisfy, we can expect that a search engine
will return more relevant results for a content-and-structure query than for the
keyword query, provided that the content-and-structure query correctly captures
the same information need as the keyword query. Our feedback framework aims
at generating a content-and-structure query from a keyword query, exploiting
relevance feedback provided by a user for some results of the keyword query.

For space restrictions we can only informally present our approach here; a
more detailed and formal description can be found in [24].

5.1 Candidates for Query Expansion

Following the discussion in the beginning of this section, we derive the following
classes of candidates for query expansion from an element with known relevance:

– all terms of the element’s content together with their score (C candidates),
– all tag-term pairs of descendants of the element in its document, together

with their score (D candidates),
– all tag-term pairs of ancestors of the element in its document, together with

their score (A candidates), and
– all tag-term pairs of descendants of ancestors of the element in its document,

together with their score and the ancestor’s tag (AD candidates).

The system can be extended with additional classes of candidates like tags, twigs,
or paths, which is subject to future work.

The candidate set of an element is the set of all possible candidates for this el-
ement. We extend the notion of frequencies from terms to candidates as follows:
the element frequency of a candidate is the number of elements where the candi-
date appears in the candidate set, and its document frequency is the number of
documents with at least one element with the candidate in their candidate set.

5.2 Candidate Weights and Selection

To weight the different candidates, we apply an extension of the well-known
Robertson-Sparck-Jones weight [19] to element-level retrieval in XML, applying
it for elements instead of documents:

wRSJ (c) = log
rc + 0.5

R − rc + 0.5
+ log

E − efc − R + rc + 0.5
efc − rc + 0.5

Here, for a candidate c, rc denotes the number of relevant elements which contain
the candidate c in their candidate set, R denotes the number of relevant elements,



Relevance Feedback for Structural Query Expansion 351

E the number of elements in the collection, and efc the element frequency of
the candidate.

The set of all possible expansion candidates is usually very large and contains
many unimportant and misleading expansions, so we have to select the best b of
them for generating the expanded query. This problem already exists for content-
based expansion of keyword queries, and several possible weights have been pro-
posed in the literature that go beyond naively ordering terms by their weight. We
use the so-called Robertson Selection Values (RSV) proposed by Robertson [18].
For a candidate c, its RSV has the form RSV (c) = wRSJ (c) · (p − q), where
p = rc/R is the estimated probability of the candidate occurring in a relevant
element’s candidate set and q is the probability that it occurs in a nonrelevant
element’s set. We ignore candidates that occur only within the documents of ele-
ments with known relevance as they have no potential to generate more relevant
results outside these documents. We order the union of the remaining candidates
by their RSV and choose the top b of them, where b is a configuration parameter
of the system. To be able to generate a valid NEXI query in the next step, we
have to limit the A and AD candidates chosen to contain the same ancestor tag.

5.3 Generating an Expanded Query

Using the top-b candidates, we generate a content-and-structure query from the
original keyword query. This expansion is actually straight-forward, and the
generated query has the following general structure:

//ancestor-tag[A+AD constraints]//*[keywords+C+D constraints]

As an example, if the original query was ’XML’ and we selected the A candidate
(anc,article,’IR’), the AD candidate (article,bib,’index’) and the D candidate
(desc,p,’index’), the expanded query would be

//article[about(.,’IR’) and about(//bib,’index’)]//*[about(.,’XML’)
and about(//p,’index’)]

Each of the expansions is weighted, where the weight is the candidate’s RSJ
weight adjusted by a factor that depends on the candidate’s class. C and D candi-
dates help finding new relevant results, so they should get a high weight; we allow
for C and D conditions at most the weight of all original keywords (to make sure
that the new constraints don’t dominate the query’s results). As an example, for a
query with four keywords and six C and D expansions, the factor for each expan-
sion is 4

6 . On the other hand, A and AD conditions are satisfied by most – if not all
– elements of a document, so they generate a huge amount of new result elements,
most of which will be nonrelevant. Their weight should therefore be smaller than
the weight ofC and D conditions. We choose a fractionβ of the accumulated weight
of existing keyword conditions, with β = 0.2 in our experiments.

6 Architecture and Implementation

We have implemented the reranking approach from Section 4 and the query
expansion approach from Section 5 within an automated system that can import
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queries and results from INEX and automatically generate feedback for the top-k
results, using the existing INEX assessments.

Our Java-based implementation requires that important information about
elements is precomputed: unique identifiers for the element (eid) and its docu-
ment (did), its pre and post order to facilitate the evaluation of structural query
conditions like the XPath axes [6] or any other similar information, its tag, and
its terms (after stemming and stopword removal), together with their score. This
information is stored in a database table with schema (did,eid,term,tag,pre,
post,score) that contains one tuple for each distinct term of an element. Our
current prototype reuses the TagTermFeatures table of TopX (see [26]) that
already provides this information. On the database side, we provide indexes on
(eid,did) to efficiently find d(e) for an element e and on (did) to efficiently
collect all elements of a document. Inverse element and document frequencies of
the different candidate classes are precomputed (e.g., while initially parsing the
collection) and stored in database tables, too.

7 Evaluation of Feedback Runs

The evaluation of feedback runs for XML IR is a problem that has not yet been
solved in a satisfying way. People have agreed that simply comparing the results
of a run with feedback to the baseline run (which we call plain later) is unfair as
the new run has information about relevant elements and hence is biased. The
INEX Relevance Feedback track has used two different measures so far:

– In 2004, a variant of the residual collection technique was proposed 1. Here,
all XML elements with known relevance must be removed from the collection
before evaluation of the results with feedback takes place. This means not
only each element used or observed in the RF process but also all descen-
dants of that element must be removed from the collection (i.e., the residual
collection, against which the feedback query is evaluated, must contain no
descendant of that element). All ancestors of that element are retained in
the residual collection.

– In 2005, the rank of results with know relevance is frozen, thus assessing
only the effect of reranking the results with unknown relevance. We label
this approach freezeTop as usually the top-k results are used for feedback
and hence frozen.

Using the residual collection approach opens up a variety of different evalua-
tion techniques:
– resColl-result: only the elements for which feedback is given are removed

from the collection,
– resColl-desc: the elements for which feedback is given and all their descen-

dants are removed from the collection (this is the technique used in this
year’s RF track),

1 This is stated on the official homepage of the INEX 2004 RF track [10]. We do not
know to which extend it was really used by the participants.
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– resColl-anc: the elements for which feedback is given and all their ancestors
are removed from the collection, and

– resColl-doc: for each element for which feedback is given, the whole document
is removed from the collection.

We evaluate our approaches with all six evaluation techniques in the following
section and try to find out if there are any anomalies.

8 Experimental Results

8.1 Official Runs

We submitted reranking runs for the best CO.Thorough runs of our TopX en-
gine [26] (MPII TopX CO.Thorough exppred) and our XXL engine [22] (XXL++;
CO.Thorough;andish;noExp), using 5 C and 5 D features. Additionally, we sub-
mitted naive reranking runs that simply boost the score of elements within doc-
uments with at least one known relevant element (from the feedback). For the
structural query expansion technique, we submitted only a run based on the
TopX baseline run (this approach is implemented only on top of TopX), using
the best 10 of all expansion candidates. For the official runs, the algorithms were
provided with the relevance (exhaustivity and specificity) of the top 20 results
of the baseline run. Using the freeze-top approach, these results with known rel-
evance are replicated at the top of the newly generated runs. The evaluation
measured absolute and relative gain over the corresponding baseline runs for the
nxCG[50] and ep/gr metrics with the strict, generalized and generalisedLifted
quantizations.

For all evaluations, the reranking runs outperformed the query expansion ap-
proach and most (usually all) runs submitted by other participants, with peak
relative gains of 335% (for the TopX-based non-naive reranking with ep/gr and
strict). The naive reranking runs did surprisingly well, with peak relative gains
of 196% for the same metrics and quantization. The query expansion approach
consistently gave less improvements than the reranking approaches; our exper-
iments with the old inex eval metric (see below) yielded the opposite result, so
this needs further exploration.

8.2 Additional Runs

For the additional unofficial runs that were created after the official deadline, we
used a CO.Thorough run created with an enhanced version of TopX engine for
the 2005 CO topics2. Table 1 shows the macro-averaged precision for this run
for the top-k ranked elements per topic, for different k; this corresponds to the
average fraction of relevant results among the elements used for top-k feedback.

2 The main reason for the relatively low MAP value of this run compared to our
official run is the result of topic 228 where the new run ranks the only result in rank
2 instead of 1, yielding a MAP difference for this topic of about 0.7.
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Table 1. Precision at k for the baseline run

k 10 15 20
prec@k 0.0593 0.0519 0.0500

Note that the average precision is much lower than in previous experiments
with the INEX 2003 and 2004 CO topics where TopX yielded an average precision
of 0.231 at the top-5 and still 0.174 at the top-20 results. We can effectively use
only 10 of the 40 2005 CO topics (those with assessments and with at least
one relevant result among the top-20 results) for the experiments, which makes
the significance of the experiments at least questionable and at the same time
explains the relatively low improvements shown in the following subsections.
Table 2 gives some more information on this issue: it shows the number of topics
in the baseline run that have a certain number of relevant results among the
top k, for varying k. Again, it is evident that most topics do not have any
relevant results at all. As an additional problem, there are some topics with only
a few relevant results, which makes possible that slight changes in the order of
results cause huge differences in the resulting MAP values. We decided therefore
to present only our results with top-20 feedback in the following as the other
results would not be significant anyway.

Table 2. Number of topics in the baseline run with r relevant results among the top
k results

k/r 0 1 2 3 4 5 6
5 23 1 3 0 0 0 -
10 19 5 0 2 0 1 0
15 18 5 0 2 1 0 1
20 17 4 1 3 0 0 2

For each run, we measured the MAP using inex eval with the strict quanti-
zation and the latest set of assessments. We plan to evaluate our results with
other metrics in the future.

Results for Reranking Queries. Table 3 shows the MAP values of our ex-
periments with different combinations of features to rerank the initial results,
providing relevance feedback for a different number of top elements of the base-
line run and selecting the best 5 features of each dimension, for the different
evaluation techniques.

The results are surprisingly different from our earlier results in [23]: the abso-
lute improvements are quite small, and the best results are achieved with either
only P, only D, or both candidates. We attribute this to the fact that there are
at most 10 topics with relevant results in the top-k; the remaining topics pro-
vide only negative feedback which seems to be not helpful here. Additionally, it
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Table 3. MAP values for top-20 feedback runs with different configurations and dif-
ferent evaluation methods, for the reranking approach

evaluation baseline C P C+P D C+D D+P C+D+P
plain 0.0367 0.0465 0.1008 0.0534 0.0911 0.0492 0.1120 0.0563
resColl-result 0.0262 0.0343 0.0581 0.0216 0.0412 0.0312 0.0579 0.0228
resColl-anc 0.0267 0.0340 0.0581 0.0198 0.0400 0.0297 0.0589 0.0219
resColl-desc 0.0330 0.0180 0.0489 0.0142 0.0284 0.0132 0.0498 0.0151
resColl-doc 0.0309 0.0140 0.0480 0.0114 0.0249 0.0097 0.0468 0.0126
freezeTop 0.0367 0.0367 0.0371 0.0353 0.0373 0.0369 0.0362 0.0358

is evident that the different evaluation methods don’t agree at all about which
combination gives the best results. Other than that, it is interesting that some
runs (like the D run which looks like the absolutely best choice with the freeze-
Top evaluation) do great with some evaluation techniques, but perform worse
than the baseline with others. This is an anomaly that should be investigated
further.

Results for Queries with Structural Constraints. Table 4 shows a compar-
ison of MAP values with the different evaluation techniques of our experiments
with different combinations of candidate classes for query expansion, providing
relevance feedback for the top 20 elements of the baseline run and selecting the
best 10 candidates for expansion.

The results are less impressive than we had expected after earlier experiments
with the 2003 and 2004 CO topics. The best of our techniques (which consistently
is the combination of all candidate classes for all five evaluation techniques, not
counting the plain run) yields a performance gain of about 5%–20%, whereas
we could show up to 100% in the other experiments (with resColl-desc). We
think that there are mainly two reasons for this difference: The 2005 topics are
inherently more difficult than the older topics (which is also reflected in the much
lower MAP scores for the best runs this year), and there are only 10 topics where
our approaches have a chance to enhance the quality (because Robertson-Sparck-
Jones weights are not useful without relevant results) with top-20 feedback and

Table 4. MAP values for top-20 feedback runs with different configurations and dif-
ferent evaluation methods, for the query expansion approach

evaluation baseline C D C+D A AD A+AD A+C+D+AD
plain 0.0367 0.0419 0.0707 0.0406 0.0646 0.0663 0.0654 0.0513
resColl-result 0.0262 0.0294 0.0300 0.0295 0.0309 0.0306 0.0294 0.0324
resColl-anc 0.0267 0.0350 0.0356 0.0305 0.0298 0.0294 0.0296 0.0366
resColl-desc 0.0330 0.0353 0.0355 0.0355 0.0363 0.353 0.0346 0.0365
resColl-doc 0.0309 0.0317 0.0313 0.0314 0.0321 0.0310 0.0315 0.0325
freezeTop 0.0367 0.0378 0.0374 0.0375 0.0384 0.0378 0.0380 0.0387
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even fewer for the other runs. Absolute values are slightly higher than the values
achieved with the reranking approach, so choosing the best candidates out of a
pool of expansion candidates instead of picking a fixed number from each class
seems to perform better.

9 Conclusion and Future Work

This paper has made important steps from content-based to structural feedback
in XML retrieval. It presented two independent approaches that exploit struc-
tural and content features: reranking an existing list of results and evaluating a
structurally expanded query. The methods achieved good results in this year’s
Relevance Feedback Track and reasonable results for the earlier years.

Our future work will contentrate on more complex structural aspects of doc-
uments (like twigs, tags and paths) and extending this work to queries with
content and structural constraints.
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Abstract. XML information retrieval (XML-IR) systems aim to provide users 
with highly exhaustive and highly specific results. To interact with XML-IR 
systems users must express both their content and structural needs in the form 
of a structured query. Historically, these structured queries have been formatted 
using formal languages such as XPath or NEXI. Unfortunately, formal query 
languages are very complex and too difficult to be used by experienced, let 
alone casual, users and are too closely bound to the underlying physical struc-
ture of the collection. Hence, recent research has investigated the idea of speci-
fying users’ content and structural requirements via natural language queries 
(NLQs). The NLP track was established at INEX 2004 to promote research into 
this area, and QUT participated with the system NLPX. Here, we discuss 
changes we’ve made to the system since last year, as well as our participation in 
INEX 2005.   

1   Introduction 

Information retrieval (IR) systems respond to user queries with a ranked list of rele-
vant results. Traditionally, these results have been whole documents, but since XML 
documents separate content and structure XML-IR systems are able to return highly 
specific information to users, lower than the document level. However, to take advan-
tage of this capability XML-IR users require an interface that is powerful enough to 
express their content and structural requirements, yet user-friendly enough that they 
can express their requirements intuitively.  

Historically, XML-IR systems have used two types of interfaces: keyword based 
and formal query language based. Keyword based systems are user-friendly, but lack 
the sophistication to fully express users’ content and structural needs. In comparison, 
formal query language-based interfaces are able to express users’ content and struc-
tural needs, but are too difficult to use, especially for casual users [7,9] and are bound 
to the physical structure of the document. Recent investigation has begun into a third 
interface option via natural language that will allow users to fully express their con-
tent and structural needs in an intuitive manner. 

We have previously presented NLPX [10,11] an XML-IR system with a natural 
language interface. NLPX accepts natural language queries (NLQs) and translates 
them into NEXI queries. NEXI is an XPath-like formal query language that is used as 
a frontend to many existing XML-IR systems. NLPX participated in the natural 
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language processing track of the 2004 INitiative for the Evaluation of XML Retrieval 
Workshop (INEX). INEX’s NLP uses the same Content Only (CO) and Content and 
Structure (CAS) topics as its Ad-hoc track, however, as input systems use the topics’ 
Description rather than Title element.  

Since last year’s participation we have made several improvements to NLPX. Here 
we discuses three major improvements:  inclusion of more special connotations, in-
troduction of shallow parsing and inclusion of more templates. We also describe our 
participation in the INEX 2005 NLP track and present our results.  

2   Motivation 

We have already outlined the motivations for an XML-IR natural language interface 
in our previous work [10,11]; however, for completeness we include them here. The 
motivations stem from the problems with formal XML-IR query languages and are 
twofold: first, formal query languages are difficult to use, and second, they are too 
tightly bound to the physical structure of documents. 

First, formal query languages are too difficult for many users to correctly express 
their structural and content information needs. Two very good examples of this have 
occurred at the 2003 and 2004 INEX Workshops. In 2003 INEX used the XPath [3] 
formal language to specify structured queries; however, 63% of the proposed queries 
had major semantic or syntactic errors. Furthermore, the erroneous queries were diffi-
cult to fix, requiring 12 rounds of corrections. In response to this problem, O’Keefe 
and Trotman [7] designed a simplified version of XPath called NEXI, which was used 
in INEX 2004. When NEXI was used, the error rate dropped to 12%, with the number 
of topic revision halved [9].While these figures are limited to two formal languages, 
O’Keefe and Trotman investigated other structured query languages such as HyTime, 
DSSSL, CSS and XIRQL and concluded that all of them are very complicated and 
difficult to use. Therefore, if experts in the field of structured information retrieval are 
unable to correctly use complex query languages, one cannot expect an inexperienced 
user to do so, a consensus that has been confirmed by participants in INEX’s interac-
tive track [13].  However, we feel that users would be able to intuitively express their 
information need in a natural language.  

Secondly, formal query languages are too tightly bound to the physical structure of 
documents; hence, users require an intimate knowledge of the documents’ composi-
tion in order to fully express their structural requirements. So, in order for users to 
retrieve information from abstracts, bodies or bibliographies, they will need to know 
the actual names of those tags in a collection (for instance: abs, bdy, and bib). While 
this information may be obtained from a document’s DTD or Schema there are situa-
tions where the proprietor of the collection does not wish users to have access to those 
files. Or, in the case of a heterogeneous collection, a single tag can have multiple 
names (for example: abstract could be named abs, a, or abstract). This is a problem 
identified by participants in the INEX 2004 heterogenous track [6] who have pro-
posed the use of metatags to map between collections [6] and extensions to NEXI [9] 
to handle multiple tag names. In contrast, structural requirements in NLQs are ex-
pressed at a higher conceptual level, allowing the underlying document’s structure to 
be completely hidden from users.  
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3   Previous Work by Authors 

This paper expands on the previous work of the authors presented in [10,11]. We 
submitted our system, NLPX, to the 2004 INEX Natural Language Processing Track 
where it performed very successfully (1st in CAS, 2nd in CO). INEX’s NLP track used 
the same topics and assessments as its Ad-hoc track; however, participating systems 
used a natural language query as input, rather than a formal language (NEXI) query. 
Examples of both query types are expressed in Figure 1. Note that the query actually 
contains two information requests, first, for sections about compression, and second, 
for articles about information retrieval. However, the user only wants to receive re-
sults matching the first request. We refer to the former as returned requests/results and 
the latter as support requests/results. 

 

 
 
 
 
 
 

Fig. 1. A NEXI and Natural Language Query 

We had previously participated in INEX’s Ad-hoc track with GPX, a system that 
accepted NEXI formatted queries. Therefore, we decided to use GPX as a backend 
system. This allowed us to concentrate on developing a frontend that translated natu-
ral language queries to NEXI. Translation involved three steps that derived syntactic 
and semantic information from the natural language query (NLQ). We refer to these 
three steps as the NLPX framework and outline them below: 

1. First, we tagged words in the NLQ as either a special connotation or by their part 
of speech. Special connotations are words of implied semantic significance. We 
differentiated between three types: Structures (such as section, abstract) that speci-
fied structural requirements, Boundaries (such as contains, about) that separated 
structural and content requirements, and Instructions (such as find, retrieve) that 
indicated if we had a return or support request. Words corresponding to special 
connotations were hard-coded into the system and matched to query words by a 
dictionary lookup. Remaining words were tagged by their part of speech (such as 
noun, verb, conjunction) via a Brill Tagger [2]. 

2. Second, we matched the tagged NLQs to query templates. The templates were 
derived from the inspection of previous INEX queries. Since the NLQs occurred in 
shallow context they required only a few templates, significantly less than if one 
wished to capture natural language as a whole. Each template corresponded to an 
information request. Each request had three attributes: Content, a list of 
terms/phrases expressing content requirements, Structure, a logical XPath expres-
sion expressing structural requirements, and an Instruction, “R” for return requests, 
and “S” otherwise.  

NEXI: //article[about(.,‘information retrieval’)] //sec[about(./, compression)] 
 

NLQ: Find sections of articles about image and text compression in articles about 
efficient information retrieval 
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3. Finally, the requests were merged together and output in NEXI format. Return 
requests were output in the form A[about(.,C)] where A is the request’s structural 
attribute and C is the request’s content attribute. When all return requests were 
processed, support requests were inserted. The insert position was located by com-
paring the structural attributes of return and support requests and by finding their 
longest shared descendant. The output of support requests had the form 
D[about(E,F)] where D is the longest matching string, E is the remainder of the 
support’s structural attribute and F is the support’s content attribute. Note, that  
while NLPX outputs NEXI queries this step has been modulated so that NLPX 
could be extended to include any number of formal query languages.  

4   Improvements 

Since our participation in INEX 2004 we have made several improvements to NLPX, 
here we outline three major improvements. Our first two improvements were to in-
crease the number of special connotations and templates recognised by NLPX.  These 
improvements correspond to the first two steps of the NLPX framework established in 
Section 3. These improvements increased the range of queries NLPX could handle, 
thereby increasing its robustness. The third improvement was to implement a shallow 
parsing stage between the first two framework steps. The shallow parser grouped 
together query terms into atomic semantic units before full parsing. This allowed for 
further lexical analysis to be performed on the units, leading to an overall increase in 
retrieval performance. Here, we discuss these three improvements in detail. 

4.1   Additional Special Connotations 

The INEX natural language queries are very diverse in nature, presenting a challenge 
for all those wishing capture their syntactic and semantic meaning via a natural lan-
guage inference. In NLPX, we tag query words of semantic importance as special 
connotations. Previously, NLPX recognised three special connotations: Instructions, 
Boundaries and Structures. These connotations were able to handle many of the INEX 
queries, however, they were not able to handle some of the more novel NLQs. There-
fore, we have extended the number of conations recognised by NLPX to allow for a 
broader range of queries to be handled. Here, we describe the special connotations we 
added to NLPX. 

4.1.1   Negations  
The first connotation added to NLPX was negation. Negations fulfill the user’s 
information need by explicitly stating the information content that the user does not 
want to retrieve, rather than the information content that they want to retrieve. 
Negations are expressed in NEXI by the use of a minus symbol (-), and are expressed 
in NLQs by the use of words such as no, non or not. An example of a negation occurs 
in topic number 139.  
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Fig. 2. Topic Number 139. An example of the use of a negation. 

4.1.2   Strengtheners 
The second connotation we added to NLPX was strengtheners. Users employ strengthens 
to add weighting to query terms that are highly important to their information need. 
Strengthens are expressed in NEXI by the use of the plus (+) symbol, and are expressed 
in NLQs by the use of terms and phrases such as particularly and major focus. An 
example of a strengthener occurs in topic number 137. 

 
 
 
 
 
 

 

 
Fig. 3. Topic Number 124. An example of the use of a strengthener. 

4.1.3   Reverse Boundaries  
The third connotation added was reverse boundaries. Previously we had identified a 
boundary as a query term that separates structural items and content items. NLPX 
uses boundaries to pair structures with their respective content. Examples of 
boundaries are query terms such as talk about or contains. Reverse boundaries have a 
similar function to ordinary boundaries, since NLPX also uses them to pair together 
structures and content; however, reverse boundaries occur after the content items 
rather than before. Often reverse boundaries are past tense versions of ordinary 
boundaries such as talked about or contained. An example of a reverse boundary 
occurs in topic number 160.  
 

NEXI: //article[about(.//bb//au//snm, Bertino) or about( .//bb//au//snm , Jajodia)) 
and about(.//bb//atl, security model) and about(.//bb//atl, -"indexing model" - 
"object oriented model")] 

 
NLQ: We wish to identify papers that cite work by authors Bertino or Jajodia 
that deal with "security models". Security models should thus be the subject in 
the title of the cited papers by Bertino or Jajodia. We are interested in any kind of 
security models that Bertino or Jajodia developed (e.g. authorization models). 
We are not interested in other kind of models (e.g. objet oriented/indexing mod-
els). 

NEXI: //*[about(.,application algorithm +clustering +k-means +c-means "vector 
quantization" "speech compression" "image compression" "video 
compression"  
 
NLQ:  Find elements about clustering procedures, particularly k-means, aka c-
means, aka Generalized Lloyd algorithm, aka LBG, and their application to im-
age speech and video compression.  
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Fig. 4. Topic Number 160. An example of the use of a reverse boundary. 

4.1.4   Anaphoric Topics 
The fourth connotation added was an anaphoric topic. An anaphoric topic occurs 
when some part, usual a content item, of the topic is referred to later on in the topic 
using a pseudonym. Anaphoric topics are conceptually similar to a noun subsequently 
been referenced via a pronoun. An example of an anaphoric topic occurs in topic 
number 161 where the phrase that topic refers to the previously mentioned content 
terms database access methods for spatial and text data. 

 
 
 
 
 
 
 

Fig. 5. Topic Number 161. An example of the use of anaphoric topic. 

4.1.5   Inclusion of Stopwords 
The final new special connotation recognised by NLPX was stopwords. Stopwords 
are words that occur in too frequently to be of any value in IR systems and are often 
ignored. Our backend system GPX already ignores some stopwords; however, we 
incorporated also them into NLPX since we wanted NLPX to be a generic interface 
that could be used by any XML-IR backend system. Rather than use the same stoplist 
used in GPX that is derived from frequently occurring terms (>50,000 times) in the 
INEX corpus, we used a standard stop list defined in Fox [4]. Once again we made 
this decision so that NLPX would be a generic interface.  

4.2   Shallow Parsing 

The second improvement we made to NLPX was to add an intermediate step of shallow 
parsing between our lexical tagging and template matching. Shallow parsing, also called 
text chunking, is the process of dividing sentences into atomic, nonoverlapping segments 
(called chunks), and then classifying them into grammatical classes. It is usually per-
formed after part of speech tagging, and as demonstrated by Abney [1] it can be used as a 
precursor to full parsing. Alternatively it can be used in other tasks such as index term 
generation, information extraction, text summation and bilingual alignment. Initial re-
search into shallow parsing was focused on identifying noun phrases; however, more 
recent work has extended its reach to include general clause identification.  

NEXI: //article[about(., image retrieval)]//sec[about(., "latent 
semantic indexing")] 
 
NLQ: We are looking for sections in articles where "image retrieval" is talked 
about, that describe "latent semantic indexing". 

NEXI: //article[about(., database access methods for spatial data and 
text)]//bm//bb[about(./atl, database access methods)] 
 
NLQ: Find bibliography entries about database access methods for spatial and 
text data from articles related to that topic. 
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There are two types of chunks that are systems recognised: 

• Explicit Chunks: These are chunks that are explicitly defined by users by add-
ing parenthesises around important phrases in the query. Characters used to 
signify parenthesises were commas, colons, semi-colons, brackets and quota-
tion marks.  Generally, we noted that parenthesises were used to signify im-
portant content phrases. 

• Implicit Chunks: These are chunks that are not explicitly defined by users, 
but rather derived by analysing the grammatical properties and/or context 
of query terms. It is used to group together terms of implied significance in 
the system. A classic example is to group together adjectives and nouns to 
form a single noun phrase. In NLPX, we identify four chunks of signifi-
cance: Instructions, Structures, Boundaries (include Reverse Boundaries) 
and Content.  

We have previously incorporated a shallow parser in our previous work [12]. In that 
version a process called transformation-based learning (TBL) [2] to learn when to 
include query terms into a chunk based on both its grammatical properties (the tag of 
the current term) and its context (the tags of surrounding terms). This process was 
based upon the work of Ramshaw and Marcus [8] who originally used it to group 
together noun phrases. We extended their theories to work on structured queries. 
Unfortunately, we did not have time to retrain our system to recognise the new special 
connotations introduced earlier, therefore, we based the decision solely on the tag of 
the current term. 

4.3   Additional Templates 

The final improvement we made to NLPX was the addition of new templates. These 
additions were needed to handle both the new special connotations and the grouping 
of query terms into chunks. Figure 6 presents the templates that NLPX previously 
recognised: 

  
 
 
 
 

 

Fig. 6. Existing NLPX Query Templates 

Note that these templates work only on a word rather than a chunk level. However, 
it was straightforward to migrate the templates since the set of four single–term ter-
minals (Instruction, Structure, Boundary and Content) had corresponding chunk 
classes. However, we also added new query templates to the NLPX, which we de-
scribe here.  

Query: Request+ 
Request : CO_Request | CAS_Request 
CO_Request: NounPhrase+ 
CAS_Request: SupportRequest | ReturnRequest 
SupportRequest: Structure [Bound] Content+ 
ReturnRequest: Instruction Structure [Bound] Content+ 
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4.3.1   Conjuncting Structures 
The first template added to NLPX was used to handle conjucting structures. This 
occurs when two structures are separated by a conjunction (for example and, or). In 
this situation it is implied that users wish to search elements that match either of the 
structures. Figure 7 presents the templates added to the system while Figure 8 pre-
sents topic 127, an example of conjuncting structures. 

 
 
 
 

Fig. 7. Conjucting Structures Query Templates 

 
 
 
 
 

 

 
Fig. 8. Topic Number 127. An example of the use of conjucting structure 

4.3.2   Reverse Boundaries 
The second template added to NLPX was to handle the cases of reverse boundaries. 
When NLPX encounters a reverse boundary it matches the previously parsed content 
items with  the current structure and then begins a new request.  Figure 9 presents the 
new query templates used to handle reverse boundaries and Figure 10 presents topic 
160, which contains an example of a reverse boundary (and previous presented in 
figure 4). 
 
 
 
 

 
Fig. 9. Reverse Boundary Query Templates 

 

 

 

Fig. 10. Topic Number 160. An example of the use of a reverse boundary 

 

Structure: StructureChunk [OtherStructure+]
OtherStructure : Conjunction StructureChunk

NEXI: //sec//(p| fgc)[about( ., Godel Lukasiewicz and other fuzzy implication 
definitions)] 
 
NLQ: Find paragraphs or figure-captions containing the definition of Godel, 
Lukasiewicz or other fuzzy-logic implications

SupportRequest:  Structure [Bound] Content+ |  
Structure Content+ [ReverseBound] 

ReturnRequest:  Instruction Structure [Bound] Content+ | 
Instruction Structure Content+ [ReverseBound] 

NEXI: //article[about(., image retrieval)]//sec[about(., "latent 
semantic indexing")] 
NLQ: We are looking for sections in articles where "image retrieval" is talked 
about, that describe "latent semantic indexing". 
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4.3.3   Parenthetical Information Requests 
Parenthetical information requests occur when a new information request occurs in 
the middle of another information request. Usually this occurs when a boundary ele-
ment occurs after a completed information request, thereby indicating that a instruc-
tion or a structure has preceded it. When this occurs, NLPX must fully handle the new 
information request, before returning to handle the remaining content information. 
Figure 11 presents the new query templates used to handle parenthetical information 
requests and Figure 12 presents topic 160, which contains an example of a parentheti-
cal information requests (and previous presented in figure 4). 
 
 
 

 

Fig. 11. Parenthetical Information Request Templates 

 
 
 

 

Fig. 12. Topic Number 145. An example of the use of a parenthetical information request 

5   System Backend 

Once the NLQ was tagged, chunked and matched to templates it was transformed into a 
NEXI query using the existing NLPX system. This is a two stage process. First we ex-
panded the content of the query, by deriving phrases based on its lexical properties, such 
as noun phrases that include adjectives participles. Then we formatted a NEXI query 
based upon its instruction, structure and content values. We passed the NEXI query to 
our existing GPX system for processing as if they were a standard Ad-hoc query. To 
produce its results list GPX collects leaf elements from its index and dynamically creates 
their ancestors. GPX’s ranking scheme rewards leaf elements with specific rather than 
common terms, and that contain phrases. It also rewards ancestors with multiple relevant 
children rather than a single relevant child. A more comprehensive description of GPX 
can be found in our accompanying paper as well as earlier work [5].  

6   INEX 2005  

6.1   INEX 2005 Submissions 

For this years’ INEX 2005 NLP track was made submissions for the CO+S and CAS 
topics. This is slightly different to the Ad-hoc track where systems can also make 
additional submissions based on CO topics, however, since CO topics do not contain 
any structural constraints, they were not considered for inclusion in the NLP track. 

SupportRequest:  Structure [SupportRequest]  Bound Content+ | 
ReturnRequest:  Instruction Structure [ReturnRequest]  Bound Content+  

NEXI: //article[about(.,information retrieval)]//p[about(.,relevance 
feedback)] 
NLQ: We are looking for paragraphs in articles about information retrieval deal-
ing with relevance feedback. 
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Furthermore, all submissions were made automatically, that is, without human inter-
vention such as query expansion via relevance feedback. 

6.2   INEX 2005 Results  

This section discusses the results of our submissions. We present results for the CO+S 
and CAS tasks. Due to length constraints we have not included any graphs, however, 
we have included tables. 

6.2.1 CO+S Results 
Tables 1 to 4 present the results for the CO+S tasks. In each of the tables we have 
compared the results of the NLP submission with the results of a baseline that used 
 

Table 1. The Results of the COS Focused Submissions 

Metric Quant Score NLPX Focused Score Base Ratio (N/B) 
Strict 0.0555 0.1059 0.5241 
Gen 0.1693 0.2395 0.7069 

   nXCG[10]

GenLifted 0.1924 0.2730 0.7048 
Strict 0.0555 0.1088 0.5101 
Gen 0.1668 0.1998 0.8348 

   
nXCG[25] 

GenLifted 0.1835 0.2132 0.8607 
Strict 0.0618 0.1031 0.5994 
Gen 0.1619 0.1892 0.8557 

   
nXCG[50] 

GenLifted 0.1767 0.2103 0.8402 
Strict 0.0222 0.0193 1.1503 
Gen 0.0697 0.0860 0.8105 

 
ep-gr 

GenLifted 0.0781 0.1053 0.7417 

Table 2. The Results of the COS Focused (Leaves) Submissions 

Metric Quant   Score NLPX Leaves Score Base Ratio (N/B) 
Strict 0.1059 0.0824 1.2852 
Gen 0.1697 0.0555 3.0577 

   nXCG[10]

GenLifted 0.1874 0.2351 0.7971 
Strict 0.1104 0.1849 0.5971 
Gen 0.1698 0.2067 0.8215 

   
nXCG[25] 

GenLifted 0.1879 0.2240 0.8388 
Strict 0.1025 0.1662 0.6167 
Gen 0.1819 0.1850 0.9832 

   
nXCG[50] 

GenLifted 0.1920 0.2047 0.9380 
Strict 0.0449 0.0420 1.0690 
Gen 0.0807 0.0934 0.8640 

    
ep-gr 

GenLifted 0.0921 0.1103 0.8350 
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Table 3. The Results of the COS Thorough Submissions 

Metric Quant Score NLPX Score Base Ratio (N/B) 
Strict 0.0536 0.0359 1.4930 
Gen 0.1917 0.2557 0.7497 

   nXCG[10]

GenLifted 0.2139 0.2904 0.7366 
Strict 0.0418 0.0903 0.4629 
Gen 0.1784 0.2541 0.7021 

   
nXCG[25] 

GenLifted 0.1977 0.2827 0.6993 
Strict 0.0678 0.1207 0.5617 
Gen 0.1802 0.2537 0.7103 

   
nXCG[50] 

GenLifted 0.1878 0.2704 0.6945 
Strict 0.0188 0.0189 0.9947 
Gen 0.0666 0.0904 0.7367 

   
 

ep-gr GenLifted 0.0568 0.0680 0.8353 

Table 4. The Results of the COS FecthBrowse Submissions 

Metric Quant Score NLPX Score Base Ratio (N/B) 
Strict 0.1097 0.1504 0.7294 
Gen 0.1362 0.1523 0.8943 

    
ep-gr 

GenLifted 0.1537 0.1724 0.8915 

Table 5. The Results of the SSCAS Submissions 

Metric Quant Score NLPX Score Base Ratio (N/B) 
Strict 0.1250 0.1000 1.2500 
Gen 0.2374 0.2517 0.9432 

   nXCG[10]

GenLifted 0.2385 0.2800 0.8518 
Strict 0.1378 0.1578 0.8733 
Gen 0.2859 0.2885 0.9910 

   
nXCG[25] 

GenLifted 0.2882 0.3119 0.9240 
Strict 0.3738 0.1528 2.4463 
Gen 0.3050 0.3681 0.8286 

   
nXCG[50] 

GenLifted 0.3131 0.3828 0.8179 
Strict 0.0755 0.0770 0.9805 
Gen 0.1087 0.1357 0.8010 

    
ep-gr 

GenLifted 0.0985 0.1184 0.8319 

the original NEXI title as input. We present results for the Focused, Thorough and 
FetchBrowse tasks. For the Focused task, 2 submissions were produced, one that 
accepted the highest-ranking element on an element path (Focused) and one that 
accepted leaves.  
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As the results show NLPX performs comparable to the baseline (usually about 
0.8). This is an improvement on 2004 when the system was performed about 0.7 of 
the baseline. 

6.2.2   CAS Submissions 
Tables 5 to 8 present the results for each of the CAS tasks. In each of the tables we 
have compared the results of the NLP submission with the results of a baseline that 
used the original NEXI title as input. We present results for the Focused, Thorough 
and FetchBrowse tasks.  

Again NLPX performs strongly against the baseline and mostly either outperforms 
the baseline or achieves a score that is very close to the baseline (>0.9). Again this is a 
 

Table 6. The Results of the SVCAS Submissions 

Metric Quant Score NLPX Score Base Ratio (N/B) 
Strict 0.0800 0.0400 2.0000 
Gen 0.1100 0.0848 1.2972 

   nXCG[10]

GenLifted 0.1056 0.0966 1.0932 
Strict 0.0662 0.0662 1.0000 
Gen 0.1100 0.1081 1.0176 

   
nXCG[25] 

GenLifted 0.1082 0.1163 0.9304 
Strict 0.0582 0.0662 0.8792 
Gen 0.1150 0.1086 1.0589 

   
nXCG[50] 

GenLifted 0.1161 0.1142 1.0166 
Strict 0.0267 0.0274 0.9745 
Gen 0.0323 0.0282 1.1454 

    
ep-gr 

GenLifted 0.0269 0.0214 1.2570 

Table 7. The Results of the VSCAS Submissions 

Metric Quant Score NLPX Score Base Ratio (N/B) 
Strict 0.1333 0.1167 1.1422 
Gen 0.2423 0.2039 1.1883 

   nXCG[10]

GenLifted 0.2600 0.2371 1.0966 
Strict 0.1133 0.1267 0.8942 
Gen 0.2446 0.2531 0.9664 

   
nXCG[25] 

GenLifted 0.2544 0.2782 0.9145 
Strict 0.1833 0.1200 1.5275 
Gen 0.2491 0.2493 0.9992 

   
nXCG[50] 

GenLifted 0.2557 0.2618 0.9767 
Strict 0.0340 0.0383 0.8877 
Gen 0.0646 0.0620 1.0419 

    
ep-gr 

GenLifted 0.0181 0.0186 0.9731 
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Table 8. The Results of the VVCAS Submissions 

Metric Quant Score NLPX Score Base Ratio (N/B) 
Strict 0.1222 0.1222 1.0000 
Gen 0.2197 0.2520 0.8718 

   nXCG[10]

GenLifted 0.2262 0.2824 0.8010 
Strict 0.1644 0.1257 1.3079 
Gen 0.2136 0.2281 0.9364 

   
nXCG[25] 

GenLifted 0.2250 0.2531 0.8890 
Strict 0.2698 0.1142 2.3625 
Gen 0.2110 0.2080 1.0144 

   
nXCG[50] 

GenLifted 0.2252 0.2356 0.9559 
Strict 0.0483 0.0454 1.0639 
Gen 0.0758 0.0708 1.0706 

    
ep-gr 

GenLifted 0.0320 0.0297 1.0774 

significant improvement over 2004 attempts and verifies our belief that natural lan-
guage interfaces have the potential to be a viable alternative to formal languages. 

6.3   INEX 2005 Examples 

Unfortunately, we do not have the space to list the entire INEX 2005 CO+S and CAS 
topic sets. Here, we provide examples of a successful and unsuccessful translation. 
 
6.3.1   Successful Translation  
For an example of a successful translation we have chosen topic 280 (figure 13). This 
is an example of a complex query that contains both a user’s structural and content 
needs. The query contains one return request and two support requests all of which 
are handled successfully by NLPX. 
 

 

Fig. 13. Topic Number 280. A successful NLPX translation 

 

 

Fig. 14. Topic Number 285. A unsuccessful NLPX translation. 

NLQ: We are looking for articles whose body is about operating systems. 
NLQtoNEXI: //article[about(.,body body  operating systems "operating systems")] 
Original NEXI: //article//bdy[about(., operating system)] 

NLQ: find sections about approximate algorithms in works about string matching citing 
Baeza-Yates. 
NLQtoNEXI: //article[about(.,string matching "string matching" ) AND about(.//bb,Baeza-
Yates Yates "Baeza Yates" Baeza)]//sec[about(.,approximate algorithms "approximate 
algorithms" )] 
Original NEXI: //article[ about(.//bb, Baeza-Yates) and about(.//sec , string match-
ing)]//sec[about(., approximate algorithm)] 
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6.3.2   Unsuccessful Translation 
For an example of an unsuccessful translation we have chosen topic number 285. 
NLPX fails at translating this example because it is unable to determine that the body 
element is a descendant of the article element.  

7   Conclusion 

Here we presented the improvements made to our existing XML-IR NLP interface. 
Overall three improvements were made: the addition of more special connotations, 
application of shallow parsing and inclusion of more templates. These improvements 
have resulted in a performance increase in comparison with our previous system, both 
in CO and CAS queries, where our backend system using NLPX performed compara-
bly to – and even outperformed – the baseline of our backend system using NEXI 
input. This validates the claim that natural language is a potential viable alternative to 
formal query languages in XML-IR.   

References  

1. Abney, S.: Parsing by Chunks. In: Principle-Based Parsing. Kluwer Academic Publisher 
(1991) 

2. Brill, E.:  A Simple Rule-Based Part of Speech Tagger. In: Proceedings of the Third Con-
ference on Applied Computational Linguistics (ACL), Trento,  Italy (1992) 152–155 

3. Clark J., DeRose, S.: XML Path Language XPath Version 1.0. W3C Recommendation, 
The World Wide Web Consortium, November 1999 available at http://www.w3.org/ 
TR/xpath.  

4. Fox, C: Lexical Analysis and Stoplists. In: Frankes, W.B., Baeza-Yates, R. (eds.): Infor-
mation Retrieval: Data Structures and Algorithms, Prentice-Hall, Upper Saddle River, 
New Jersey, United States of America (1992) Chapter 7 102-130. 

5. Geva, S.: GPX - Gardens Point XML Information Retrieval INEX 2004. In: Fuhr, N., 
Lalmas, M., Malik, S., Szlavik Z. (eds.): Advances in XML Information Retrieval: Third 
International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2004, 
Dagstuhl, Germany, December 6–8, 2004, Revised Selected Papers. Lecture Nodes in 
Computer Science, Vol 3493. Springer-Verlag, Berlin Heidelberg New York (2005)  
221–222  

6. Larson, R.: XML Element Retrieval and Heterogenous Retrieval: In Pursuit of the Impos-
sible? In Proceedings of INEX 2005 Workshop on Element Retrieval Methodology, Glas-
gow, Scotland (2005) 38-41. 

7. O’Keefe, R., Trotman, A.: The Simplest Query Language That Could Possibly Work, In: 
Fuhr N., Malik, S. (eds.): INEX 2003 Workshop Proceedings. Dagstuhl, Germany (2003) 
167–174 

8. Ramshaw, L. Marcus, M.: Text Chunking Using Transformation-Based Learning, In: Pro-
ceedings of the Third Workshop on Very Large Corpora (1995) 82-94. 

9. Trotman, A.,  Sigurbjörnsson, B.: NEXI: Now and Next, In: Fuhr, N., Lalmas, M., 
Malik, S., Szlavik Z. (eds.): Advances in XML Information Retrieval: Third International 
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2004, Dagstuhl, 
Germany, December 6–8, 2004, Revised Selected Papers. Lecture Nodes in Computer Sci-
ence, Vol 3493. Springer-Verlag, Berlin Heidelberg New York (2005) 410–423  



372 A. Woodley and S. Geva 

10. Woodley, A., Geva, S.: NLPX: An XML-IR System with a Natural Language Interface, 
In: Bruza, P., Moffat, A., Turpin, A (eds.): Proceedings of the Australasian Document 
Computing Symposium, Melbourne, Australia (2004) 71–74. 

11. Woodley, A.,  Geva, S.: NLPX at INEX 2004, In: Fuhr, N., Lalmas, M., Malik, S., 
Szlavik Z. (eds.): Advances in XML Information Retrieval: Third International Workshop 
of the Initiative for the Evaluation of XML Retrieval, INEX 2004, Dagstuhl, Germany, 
December 6–8, 2004, Revised Selected Papers. Lecture Nodes in Computer Science, Vol 
3493. Springer-Verlag, Berlin Heidelberg New York (2005) 393–406 

12. Woodley, A., Geva, S.: Applying Error-Driver Transformation-Based Learning to Struc-
tured Natural Language Queries, In: Proceedings of the 2005 International Conference on 
Cyberworlds. IEEE Computer Society,  to appear in 2005. 

13. van Zowl, Roelof, Bass, J., van Oostendorp, H., Wiering, F.: Query Formulation for XML 
Retrieval with Brick. In Fuhr, N., Lamas, M., Trotman, A. (eds.): In Proceedings of INEX 
2005 Workshop on Element Retrieval Methodology, Glasgow, Scotland (2005) 75-83. 



From Natural Language to NEXI, an Interface
for INEX 2005 Queries

Xavier Tannier
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Abstract. Offering the possibility to query any XML retrieval system
in natural language would be very helpful to a lot of users. In 2005,
INEX proposed a framework to participants that wanted to implement
a natural language interface for the retrieval of XML documents, inde-
pendantly of the search engine. This paper describes our contribution to
this project and presents some opinions concerning the task.

1 Introduction

1.1 Motivation

Asking a question in everyday language (“natural language”) and getting a rel-
evant answer is what the everyday user really miss in the process of information
retrieval (IR). Moreover, as natural language is the best way so far to explain
our information need, using it should help a system if the query is analysed cor-
rectly. However, at present, Natural Language Processing (NLP) techniques are
not developed enough to come close to the human perception of language, and
actual results are not yet up to what we could expect [1, 2].

In the case of “traditional” IR, where documents are considered as text only
(flat documents), classical search engines need a query composed of a list of
keywords. Writing such a query is quite simple for the casual user, and the value
added by NLP approaches is not worth the complexity of these techniques.

On the other hand, many natural language interfaces (NLIs) for querying
structured documents (databases) have been developed, most of them trans-
forming natural language into Structured Query Language (SQL) [3, 4, 5]. This
is probably because the benefits that can be gained in that case are much higher
than in traditional information retrieval. Indeed, SQL (and any structured query
language used for XML retrieval as well) is hardly usable by novice and casual
users. Moreover such languages impose to know the structure of the database
(or of the documents).

But database querying is a strict interrogation. It is not information retrieval.
The user knows what kind of data is contained in the database, the information
need is precise, and a correct query necessarily leads to a correct answer. This
means that the natural language analysis must interpret the query perfectly and

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 373–387, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. Some features of flat, semi-structured and structured documents in an infor-
mation retrieval point of view

Flat semi-structured structured
documents documents (XML) documents (DB)

Content text only text + structure structure + data
Information need general precise

Request text only content and/or structure
Query keywords Structured query languages

Interpretation loose (IR) strict

unambiguously, failing which the final answer is incorrect and the user dissat-
isfied. For this reason notably, natural language interfaces for databases only
apply to very restricted domains. Even in these domains, the answer to a query
is often “I did not understand your query”.

XML retrieval stands between these two domains (see Tab. 1). Document-
oriented XML files [6], as well as databases, contain some structural information,
and the use of a NLI would be justified. But in XML IR, as in traditional IR, the
information need is loosely defined and there is no perfect answer to a query. A
NLI is then a part of the retrieval process, and thus it can interpret some queries
imperfectly, and still return useful results. The problem is then made “easier”
to solve. . . and we can even imagine an interface getting better results than
manual queries (which makes no sense in databases). Moreover more general
applications can be designed. In return, such an interface has to be very robust,
and all queries must be analysed, even imperfectly. It is not conceivable that the
system returns no answer because it did not understand the question.

1.2 INEX and Natural Language Tasks

The INitiative for Evaluation of XML Retrieval (INEX) aims at evaluating the
effectiveness of information retrieval systems for XML documents. The INEX
collection groups a set of 16819 articles from the IEEE Computer Society, rep-
resented in XML, with a set of topics and human assessments on these topics.

In 2005 campaign, two different types of topics have been designed [7]:

– Content Only + Structure (CO+S) topics, as indicated by their name, refer
only on textual content, but the user can nevertheless add some structural
hints to help the system.

– Content And Structure (CAS) topics allow a user that knows the structure of
the documents to formulate constraints on structural elements that he/she
wants to be searched for.

We participated to the campaign for both categories, but our approach focuses
principally on CAS topics. A simplified example of INEX 2005 topic is given in
Fig. 1. The element castitle is written in NEXI [8], a formal language for XML
retrieval.
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<inex topic topic id="203" query type="CO+S" ct no="5">
<title>code signing verification</title>
<castitle>//article//sec[about(., code signing verification)]</castitle>
<description>

Find documents or document components, most probably sections, that
describe the approach of code signing and verification.

</description>
<narrative>

I am working in a company that authenticates a wide range of web data
base applications from different software vendors. [. . . ] To be relevant,
a document or document component must describe the whole process of
code signing and verification, which means [. . . ]

</narrative>
</inex topic>

Fig. 1. Example of INEX 2005 topic. The title element is used for Content-Only
search, castitle for structural hints and CAS representation in NEXI. description
is used by Natural Language Processing tasks participants, while the narrative is
reserved for human assessors.

description

NEXI

NEXI 1
NEXI 2
NEXI 3

run 1
run 2
run 3

baseline

System

N
LQ

2N
EX

I

(manual)

(in English)
... ...S

Fig. 2. NLQ2NEXI

NEXI CAS queries have the form //A[B]//C[D] where A and C are paths
and B and D are filters. We can read this query as “Return C descendants of
A where A is about B and C is about D”. B and D correspond to disjunctions
or conjunctions of ’about’ clauses about(//E, F), where E is a path and F a
list of terms. The ’castitle’ part of Fig. 1 gives a good example of a query
formulated in NEXI. More information about NEXI can be found in [8].

In 2005 INEX campaign, two different tasks aimed to involve Natural Lan-
guage Processing. In the first one, called NLQ (Natural Language Queries),
participants had to consider only the description part of the topics and to re-
turn a set of XML elements (or doxels) corresponding to the request. No matter
how they performed their search, or where the NLP was used. The evaluation
of NLQ systems was the same as for the ad-hoc task.

In the second one, NLQ2NEXI, on which this paper focuses, the aim was
to translate natural language queries into title (keyword list) and castitle
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(NEXI) elements from the description. Here the idea is to build a generic
interface that could be used by any retrieval system reading NEXI queries.
Automatically generated topics have then been run with a search engine S pro-
vided by the organizers (Fig. 2). In this case, the evaluation is twofold:

1. a comparison between the effectiveness of each NLQ2NEXI system.
2. a comparison between each system and a baseline obtained by running the

system S on initial (manual) topics, in order to quantify the trade-off in
performance.

2 Natural Language Query Analysis

In our approach, requests are analysed through several steps:

1. A part-of-speech (POS) tagging is performed on the query. Each word is
labeled by its word class (e.g.: noun, verb, adjective. . . ). To carry out this
task we chose the free tool TreeTagger [9].

2. A POS-dependant semantic representation is attributed to each word. For
example the noun ’information’ will be represented by the predicate infor-
mation(x), or the verb ’identify’ by evt(e1, identify).

3. Context-free syntactic rules describe the most current grammatical construc-
tions in queries and questions. Low-level semantic actions are combined with
each syntactic rule. Two examples of such operations, applied to the de-
scription of Topic 130 (INEX 2004: “We are searching paragraphs dealing
with version management in articles containing a paragraph about object
databases.”), are given in Fig. 3. The final result is a logical representation
shown in the left part of Fig. 4. This representation is totally independent
from the queried corpus, it is obtained by general linguistic operations.

4. The semantic representation is then reduced with the help of specific rules:
– a recognition of some typical constructions of a query (e.g.: Retrieve +

object) or of the corpus (e.g.: “an article written by [. . . ]” refers to the
tag au – author);

– and a distinction between semantic elements mapping on the structure
and, respectively, mapping on the content;

Figure 4 shows the specific rules that apply to the example.
5. A treatment of relations existing between different elements;
6. The construction of a well-formed NEXI query.

Steps 1 to 5 are explained in more details in [10], as well as necessary corpus
knowledge and the effect of topic complexity on the analysis. The representation
obtained at the end of Step 5 does not depend on any retrieval system or query
language. It could be transformed (with more or less information loss) into any
existing formal language.

Transformation process from our representation to NEXI is not straightfor-
ward. Remember that a NEXI query has the form //A[B]//C[D].

– At content level, linguistic features (like noun modifier in the example) can-
not be kept and must be transformed in an appropriate manner (see Sect. 3).
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e x y

evt(e, search)
paragraph(x)
databases(y)
about(x, y)

object(e, x)
VP → VERB NP

e

evt(e, search)
VERB

searching

a b x y

paragraph(x)
databases(y)
about(a, b)

a = x
b = y

=

x y

paragraph(x)
databases(y)
about(x, y)

NP → NOUN PREP NOUN

x

paragraph(x)
NOUN

paragraph

a b

about(a, b)
PREP
about

y

databases(y)
NOUN

databases

Fig. 3. Example of rule application for the verbal phrase “searching paragraphs about
databases” (rules NP → NOUN PREP NOUN and VP → VERB NP). Basic semantic
representations are attributed to part-of-speeches (leaf components). When applying
syntactic rules, components are merged and semantic actions are added (here identity
relations and verbal relation predicate – bold predicates).

– At structural level, a set of several tag identifiers (that can be DTD tag
names or wildcards) has to be distributed into parts A, B, C and D, that
we respectively call support requests, support elements, return requests and
return elements. These four parts A, B, C and D are built from our repre-
sentation (Fig. 4) in the following way:

• C is the ’framed’ (selected) element name (see Fig. 4 and its caption);
• D is composed of all C children (relation contains) and their textual

content (relation about);
• A is the highest element name in the DTD tree, that is not C or one of

its children;
• B is composed of all other elements and their textual content.
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Initial representation Rules Result

a b c d e f g e1 e2 e3

evt(e1, search)
paragraph(a)
object(e1, a)
evt(e2, deal)
version(b)
management(c)
agent(e2, a)
with(e2, c)
noun modifier(c, b)
article(d)
evt(e3, contain)
paragraph(e)
object(f)
databases(g)
agent(e3, d)
object(e3, e)
about(e, g)
noun modifier(g, f)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 a

evt(e1, search)
object(e1, a)

⇒ a

e2 a c

evt(e2, deal)
agent(e2, a)
with(e2, c)

⇒ a c

about(a, c)

e3 d e

evt(e3, contain)
agent(e3, d)
object(e3, e)

⇒ d e

contains(d, e)

paragraph ⇒ p
article ⇒ article

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

a b c d e f g

p(a)
article(d)
p(e)

contains(d, e)
about(a, c)
about(e, g)

version(b)
management(c)
object(f)
databases(g)

noun modifier(c, b)
noun modifier(g, f)

Fig. 4. The semantic analysis of Topic 130 (left), is reduced by some generic rules
(center), leading to a new representation (right). Bold predicates emphasize words
representing XML tag names and the framed letter stands for the element that should
be returned to the user. The first three rules deal with verbal phrases “to search sth”,
“to deal with sth” and “to contain sth”.

Wildcard-identified tags of the same part are merged and are considered to
be the same element. See an example in Sect. 4.

3 Noun Phrases

Our system generates some linguistic-oriented predicates. The main ones are
np property, noun modifier and adjective. NEXI format requires the ’about’
clauses to contain only textual content. Phrases can be represented with quo-
tation marks. We chose to consider only noun phrases treatment here, because
other relations are translated in a straightforward way.

From an IR point of view, noun phrases have the general form [11]:

NP → det* pre* head post*

. . . Where det is a determiner, pre (premodifier) is an adjective, a noun or a
coordinated phrase, head is a noun and post (postmodifier) is a prepositional
phrase or a relative clause.
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In our representation, relations between premodifiers and head nouns are ex-
pressed by predicates noun modifier (if the premodifier is a noun) or adjective
(if the premodifier is an adjective). Prepositional relations between NPs (i.e. the
form NP → NPhead PREP NPpost) are represented by noun property.

All forms have been considered when analysing the natural language queries,
but we distinguished two specific constructions of NPs to build the formal
queries.

3.1 Simple Noun Groups

In English, the simplest noun groups are a succession of adjectives or nouns
followed by a head noun:

NP → (ADJ | NOUN ) + NOUN (1)

These multi-word terms are less ambiguous than simple nouns, and generally
refer to a particular domain [12]. They are not subject to many syntactical
variations (see next section), and it is quite probable that such terms representing
the same concept have the same form in most occurrences of a collection. For
all these reasons, these simple NPs are very interesting in information retrieval.
Some examples (extracted from INEX 2005 topics) are given in Tab. 2 (with an
additional rule for proper names (PNs): NP → PN+).

When translating to NEXI, all sequences of words obeying to Rule 1 are then
transcribed between quotation marks.

Table 2. Examples of simple noun groups (rule 1) in INEX 2005 topics

Topics Noun phrase

204 “semantic networks” (ADJ NOUN)
231 “graph theory” (NOUN NOUN)
210 “multimedia document models” (NOUN NOUN NOUN)
211 “global positioning systems” (ADJ NOUN NOUN)
204 “Dan Moldovan” (PN PN)

3.2 Complex Noun Phrases

Nouns or noun phrases linked to each other by prepositions are semantically
very significant [13, 14]:

NP → NP (PREP NP)+ (2)

They occur as frequently as constructions made with Rule 1 (see Tab. 3). How-
ever it is quite hazardeous to consider them as a unique multi-word term in the
same way. In particular, they are subject to many variations in their form. Fabre
and Jacquemin [15] distinguished five different simple syntactic forms that could
represent the same concept in French. For example, even without semantic vari-
ation (as synonymy), the NP “annotation in image retrieval” found in Topic 220
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can be modified with no or little semantic change into “annotate images for
retrieval”, “retrieve annotated images”, “annotated image retrieval”, “retrieval
of annotated images”, “images have been annoted for retrieval”, etc.

Table 3. Examples of complex noun phrases (Rule 2) in INEX 2005 topics

Topics Noun phrase

208 history of Artificial Intelligence
216 the architecture of a multimedia retrieval system
217 user-centered design for web sites
219 the granularity of learning objects
233 development of synthesizers for music creation
276 evaluation measure for clustering

Moreover such a phrase does often not occur at all in a relevant element.
In a phrase having the form “NP1 PREP NP2”, we have noted that one of
the sub-NPs represents the context, while the other one represents the subject
of the current sentence. The role of each part depends on the structure of the
document.

For example, suppose we look for an element dealing with “evaluation mea-
sure for clustering” (Topic 276). In an article about clustering on the whole, we
just need to look for the term “evaluation measure” (see Fig. 5). Inversely, an
article about evaluation measures in general must contain an element treating
“clustering”.

article

title

clustering

section

section

abstract

does not contain
explicitly

but is still relevant
"clustering"

a section about   evaluation measure for clustering

evaluation measure

Fig. 5. Contextual search

We have noted, after 2004 campaign, that this issue was an important source
of mis-retrieval for search engines. In the case of topic descriptions containing
NP1 PREP NP2, where NP2 was the context in most documents, many retrieved
doxels contained NP1 in a bad context, and then were not relevant. For example,
a search for “navigation systems for automobiles” (Topic 128) returned many
doxels about navigation systems in planes or ships in the first ranks.
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In this case, to remedy this problem, we would like to perform a contextual
research (for “navigation systems” in the context of a section or an article about
“automobiles” or inversely), but also a conditional research within a single doxel
(if a doxel is relevant with “automobiles”, then check for “navigation systems”).

Unfortunately this kind of features can hardly be represented with a single
NEXI query. Even so we tried to simulate such a behaviour. We noticed that the
most frequent configuration was “NP1 in the context of NP2” when the topic
description contained a NP1 PREP NP2 phrase. We decided to translate such
NPs in the following way:

– Contextual search: Addition of NP2 into a support part concerning the whole
article (root element).

– Conditional search: Addition of a sign ’+’ before NP2 in the current part.

For example, “a paragraph about navigation systems for automobiles” can be
translated into:

/article[about(., automobiles)]//p[about(.,‘‘navigation systems’’)
AND about(., +automobiles)]

In our tests with INEX 2004 collection, this approach led to a increase in pre-
cision of about 10%. But then the support element construction is quite artificial,
and this is done to the detriment of strict evaluation metrics (strict quantization
and strict interpretation of target and/or support element requirements [16]). By
choosing this strategy we admit that we focus principally on vague interpretation
and generalised quantization.

4 Example

We give here a significant example, with the analysis of a slightly simplified
version of Topic 219 (INEX 2005). Several syntactic parsings could be possible
for the same sentence. In practice a “score” is attributed to each rule release,
depending on several parameters. In our sample topic only the best scored result
is given.

(219) Find sections that discuss the granularity of learning objects.

Figure 6 shows the three major steps of the analysis of this topic. The left
frame represents the result of Step 3 (see Sect. 2). Some IR- and corpus-specific
reduction rules are then applied and lead to right frame: the term section is
recognized as tag name sec (line 3); the construction “c2 discusses c4” is changed
into about(c2, c4) (lines 4 to 6). The other relations are kept. Translation into
NEXI is performed as explained above.

5 Results

We present here our results for both CO+S and CAS INEX 2005 tasks. For CAS
task, different evaluations have been performed, depending on the interpretation
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c1 c2 c3 c4 c5 c6

1. event(c1, find)
2. object(c1, c2)
3. section(c2)
4. event(c3, discuss)
5. agent(c3, c2)
6. object(c3, c4)
7. granularity(c4)
8. rel np relation(c4, c6, of)
9. object(c6)
10. learning(c5)
11. rel noun modifier(c6, c5)

reduction−−−−−−→
rules

c2 c4 c5 c6

sec(c2)

about(c2, c4)

granularity(c4)
object(c6)
learning(c5)

rel np relation(c4, c6, of)
rel noun modifier(c6, c5)

//article[about(., "learning objects")]//sec[about(., granularity) AND
about(., +"learning objects")]

Fig. 6. Semantic representations of Topic 219, and automatic conversion into NEXI

of structural constraints (vague or strict [16]). Different sets of metrics were also
used. Tables 4 and 5 present the evaluation with nxCG[25] and ep-gr metrics in
generalised quantization [16]. These samples, representative of the entire result
set, show the comparison between the baseline and our own best run. We also
stress the ratio between our figure and the base score.

Table 4. Results for Content-And-Structure (CAS) submissions

Baseline Mines Ratio

SSCAS
nxCG[25] 0.2885 0.2693 0.93
ep-gr 0.1324 0.1064 0.80

SVCAS
nxCG[25] 0.1081 0.1004 0.93
ep-gr 0.0272 0.0298 1.06

Baseline Mines Ratio

VSCAS
nxCG[25] 0.2531 0.3051 1.21
ep-gr 0.0608 0.0682 1.12

VVCAS
nxCG[25] 0.2281 0.2572 1.13
ep-gr 0.0694 0.0799 1.15

These results show a very good performance of our system for CAS task, es-
pecially for vague interpretation (as anticipated in Sect. 3.2). Baseline is outper-
formed in many cases, often widely. This is a strong improvement in comparison
with previous year participants results, where the baseline performed about 20%
better than natural language systems.

CO+S results are also good, since our system achieves scores that are below,
but quite close to the baseline. Results are lower because the interface keeps
some meaningless words in the query. This is where our technique needs to be
improved.

Anyway it is now proved that an automatic translation can get comparable
or better results than a manual process.
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Table 5. Results for Content-Only + Structure (CO+S) submissions

Baseline Mines Ratio

COS Thorough
nxCG[25] 0.2541 0.2146 0.84
ep-gr 0.0904 0.0741 0.82

COS Focussed
nxCG[25] 0.1998 0.1853 0.92
ep-gr 0.0860 0.0717 0.83

6 Limits

6.1 Limits of the Task

Translation of natural language queries into a formal language like NEXI en-
counters some limits, mainly due to the fact that the natural language interface
cannot give some specific instructions to the retrieval system. The formal lan-
guage, if not especially designed for this aim, is a pivot preventing from any
“communication” between both systems. For example, it is not possible to con-
sider the following features within single NEXI queries1:

– NEXI does not allow to perform any conditional search (see Sect. 3.2). The
use of ’+’ sign is not semantically reliable and is often not considered by
search engines.

– NEXI cannot either deal with contextual search: A reference to the context
occurs preferentially before the retrieved element, in the paragraph preceding
it, or in the introduction of the section, etc. Directly refering to the article
as a support part of the query (as we did) is too vague.

– NEXI does not bring any proximity operators for terms or structure (but
retrieval models can compensate, many systems allow a flexible treatment
of phrases [17], and some consider the proximity of doxels [18]).

– It is not possible to represent non-hierarchical relations between elements
with NEXI (precedence for example).

– Finally, NEXI is only a query language. It is not designed to deal with any
linguistic features. With the linguistic analysis, the interface finds some in-
teresting relations between terms (or elements), as semantic relations (agent,
object, etc.), but the translation forces us to give this knowledge up.

On the one hand, formal languages will always stay more precise than natural
languages. If sometimes the system with a NLI outperforms the same system
with a hand-made NEXI query, this is because the interface found a better,
more complete and/or more adequate way to represent the information need in
NEXI. On the other hand, for all the reasons above, the use of these formal
1 In addition to this list, NEXI is not designed to deal with many database-oriented

constraints, but we are not either interested by this aspect.
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languages, if they are not thought with this aim in mind, leads to some loss of
information.

If an interface is very interesting because it can be “plugged” to (hopefully)
any kind of formal languages, and then be applied to many existing systems, it
would also be worthwhile to go further and to build a system with a self-made
pivot or without pivot at all.

6.2 Limits of the Evaluation

In the ad-hoc task, the input is constant and the retrieval systems are differ-
ent. To evaluate these systems we look at their output (a ranked list of XML
elements). In NLQ2NEXI task, the challenge is precisely to produce the input,
and the evaluation is performed indirectly, through the use of a search engine
that is common to all participants (different inputs, same system). This way we
can make sure that the differences in retrieval performance are really due to the
quality of the input, and it becomes possible to compare all NLQ2NEXI systems
with each other.

Another way to evaluate interfaces is to compare them with a manual baseline.
The same system is run on official NEXI queries2 (manually written by the
author of each topic). In this case, automatic processes are compared with a
manual process. Like all human interventions (and IR evaluation is full of them),
this introduces a new bias: automatic systems are compared with a query built
by a given person at a given time. Probably some different manual translations
of the topic description would have led to better results. Moreover, many CO+S
topics do not have any NEXI castitle3.

Finally, manual translations from description to NEXI are not always faithful,
even if this is much better than it was in 2004 [19]. In particular, many CAS sub-
topics seem to have a problem with NEXI constraints. Topic 251 is characteristic
of this issue:

(251) We are searching paragraphs which are descendant of a section dealing
with web information retrieval.

In the official transcription of the description into NEXI, the paragraphs are
considered to be dealing with web information retrieval:

//article//sec//p[about(., web retrieval)]4

Even if this interpretation is syntactically correct, it seems obvious that any
human people would understand that the section is concerned by the verbal
phrase (dealing with web information retrieval):
2 What we call the “official” NEXI title of a topic is the query proposed by the author

(see the example of Fig. 1). This NEXI query is used by the INEX ad-hoc task
participants.

3 Besides, a study on the performances of automatic NEXI titles compared to CO
official titles would probably be very interesting.

4 By the way we can note that “web information retrieval” has been replaced by “web
retrieval”.



From Natural Language to NEXI, an Interface for INEX 2005 Queries 385

//article//sec[about(., web retrieval)]//p

But this form is not correct in NEXI (where the returned element must contain
an ’about’ clause [8]).

The narrative part of this topic confirms the author’s NEXI title, but adds to
the confusion: “the paragraphs which are descendants of section describing the
topic related to web information retrieval are also regarded as relevant. However,
compared with paragraphs described above, these are considered less relevant”.

6.3 Limits of Our System

The following is a non-exhaustive list of problems encountered by our natural
language interface. In our opinion, these issues represent the most important
factors that make the system not work well for some topics. We do not broach
here the “usual” difficulties that NLP has in traditional information retrieval
(spelling mistakes, noise produced by non query terms, anaphoras, pragmatic
issues. . . ), but rather those that are specific to structural constraints.

Lexical Ambiguity. Classical lexical problems in IR are semantic relations be-
tween different words (synonymy, hyponymy, etc.) and words that have multiple
meanings (homographs). Homographs raise a new problem in XML retrieval,
where some words can be understood as normal content-based query terms, but
also as tag names (or a synonym of a tag name). Using a simple dictionary of
synonyms to detect references to tag names is obviously not enough. For example
the words “document” and “information” are, most of the time, used for refer-
ing to XML elements (“Find information/documents about”). But how to deal
with a query about “multimedia document models” (Topic 210) or “incomplete
information” (Topic 224)? What if the query is “Retrieve information about in-
formation retrieval”? Actually it does not seem so difficult to handle this with
specific syntactic features, but we clearly under-estimated this issue so far.

Corpus-dependant Knowledge. Throughout the query analysis, we use sev-
eral kinds of information about the corpus, among which the DTD (and the
terms associated with tag names), but also some specific linguistic construc-
tions. For example, as shown by Fig. 7, a query about “information by Moldovan”
(Topic 204) implicitely refers to an author (tag ’au’ in INEX collection); “works
citing Baeza-Yates” (Topic 280) introduces a bibliographic element. All these
rules are necessary to analyse many queries properly, but are an obstacle to the
extension of the tool to general corpora, or to heteregeneous collections5.

7 Conclusion

INEX 2005 NLQ2NEXI task proves that the help brought by a natural language
interface is very effective. NEXI queries that are automatically obtained from a
5 Note that these rules are structure-specific, but not domain-specific (in the case of

INEX, this means that no rules have been set up especially for computer science
information retrieval).
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a b e

work(a)
evt(e, cite)
agent(e, a)
object(e, b)
Baeza-Yates(b)

⇒

a b c

article(a)
bb(c)
Baeza-Yates(b)
includes(a, c)
contains(c, b)

a b

information(a)
Moldovan(b)
by(a, b)

⇒

a b c d

*(a)
au(c)
article(d)
Moldovan(b)
includes(d, a)
includes(d, c)
contains(c, b)

Fig. 7. Examples of corpus-dependant rules, applied on “works citing Baeza-Yates”
(left, Topic 280) and “information by Moldovan” (right, Topic 204)

description in English lead to better results than manual queries, yet written by
experts. This is the proof that natural language explanations of an information
need are not only easier to formulate, but also more effective. The results also
confirm the assumptions made in the introduction: building a natural language
interface for XML retrieval is much different than doing it for database querying
or traditional IR.

Moreover, techniques used by participants are quite different; While we (Ecole
des Mines de Saint-Etienne) obtain the best scores in CAS with a vague inter-
pretation of elements, Queensland University of Technology performs better in
strict interpretation and University of Klagenfurt gets its best results in CO task.
Teams have a lot to learn from each other, and global results should improve
a lot in the future. But each technique produces good scores for a given task
to the detriment of another one, and the best way to progress is probably to
define a new model taking all what we need into account (like conditional and
contextual searches proposed in this article).
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Abstract. Our model is based on the observation that the tags used
in XML documents are semantically related to the content that they
delimit. To evaluate the performance of our approach, we participated
in the INEX 2004 heterogeneous track, along with 34 other institutions,
from which only 5 groups, including us, submitted runs. In this paper
we describe how the approach we used in INEX 2004 and 2005 processes
heterogeneous collections without any mapping of DTDs.

1 Introduction

Our model [3] is based on the observation and theorical confirmation [1] that
the tags of an XML [4] document are semantically related to the content that
they delimit. We consider the structure of the XML standard as a new source of
evidence, able to assist in the identification of the information contained in the
documents without being essential to its identification.

According to this premise, formal aspects of XML, such as the DTD, are not
used in our model. Our aim is to associate the XML tags with their content,
based on statistical measures that are similar to those used in the standard
vector space model, which relate the frequency of terms with the information of
the document.

Thus, our model explores the diversity of tags of the XML documents, and its
potential is evaluated in heterogeneous collections, where the structural diversity
allows better linking between the semantics of tags and their content.

In this paper, we show how our model processes heterogeneous collections,
presenting how each one of the subfactors are calculated and how they are placed
in the standard vector space model to explore important aspects of the XML
structure.

The remainder of this paper is organized in as follows. Section 2 presents re-
lated work. Section 3 is about the calculation of each subfactor in heterogeneous
collections. Section 4 presents the results and Section 5 concludes the paper.

2 Related Work

In INEX 2004, according to Sauvagnat and Boughanem [12], the idea behind the
heterogeneous track is that the information seeker is interested in semantically

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 388–397, 2006.
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meaningful answers irrespective of the structure of documents. Thus, this idea
motivated their model which uses the relevance propagation method. This model
is based on automatic indexing and introduces an interesting query processing
technique that is able to process sub-queries that are logically linked. For this, the
first step is to transform NEXI [13] topics into XFIRM queries. Then, this new
query is decomposed into sub-queries. After each sub-query has been processed,
the result of each one of them is propagated to generate the whole result of the
query. However, mapping structural conditions from one DTD onto another was
a problem, and to solve it they presented one DTD built manually by comparing
the different DTDs.

Another relevant work was presented by [8], which continued to explore the
approach of fusion to XML retrieval. This approach, in the heterogeneous track,
was used to treat the different collections as separate databases with their own
DTD, but these databases can be treated as a single database by the system.
Another important work, described by Larson, was the configuration file which
could specify subsets of tags to be used with the same meaning, for example
//p, //p1, //tf for “paragraphs”. We suppose Larson did not have problems
with tags without semantic meaning such as Fld001, but he did not mention it.

In [2], an approach for creating a unified heterogeneous structure from het-
erogeneous data sources was presented. To build this unified conceptual model,
first they identified groups of concepts that are semantically similar. To do this,
they used an approach called WordNet, developed by Christine Fellbaum [5],
which is able to detect similarity between “editor” and “edition”, for example.
Finally, to treat tags without semantic meaning it is necessary to capture the
DTD comments preceding them and searches for the best cluster to put them.

All the participants of the heterogeneous track had difficulties to treat one
document that was 217MB in size. To solve this problem, Larson [8] proposed
to treat each of the main sub-elements as separate documents. Lehtonen [9] pro-
posed to divide the file into fragments based on size. Although, large documents
are problematic at “Het Track”, they are not relevant problems of “Het Track”
only, but to retrieval systems in general.

3 XML Factor Calculation

In our previous paper [3], we have defined how the standard vector space model
[10] [11] was adapted to process an XML document whose relevance is given by:

ρ(Q, D) =
∑

ti ∈ Q ∩ D
Wq(ti) ∗ Wd(ti) ∗ fxml(ti, e)

Q ∗ D
(1)

where,

– ti is a term in the collection;
– Wq(ti) is the weight of the query;
– Wd(ti) is the weight of the document;
– fxml(ti,e) is the XML factor.
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Next, we describe how the factor fxml is used to process heterogeneous collections
and return elements of different structures without any mapping between those
structures.

We consider the following characteristics of the XML standard:

– Its nested structure through the Nesting Factor (fnh);
– The similarity between the query structure and the structure of the docu-

ment, through the Structure Factor (fstr);
– The semantic relation between terms and tags, through the Co-occurrence

Factor (focr).

Then, the factor fxml is given by:

fxml(ti, e) = fnh(ti, e) ∗ fstr(ti, e) ∗ focr(ti, e) (2)

where,

– ti is a term in the collection;
– e is an element in the collection.

3.1 The Nesting Factor

The nesting factor expresses the importance of terms considering their positions
in the XML tree. As the augmentation factor, this factor reduces the term con-
tribution according to the distance of the elements in XML tree. The factor
proposed does not have a defined value. Its value is inversely proportional to the
distance between the level of the element that contains the term and its ancestor,
whose relevance is calculated. It is given by:

fnh(ti, e) =
1

(1 + nl)
(3)

where,

– nl is the number of levels from element e to its sub-element that contains
the term ti.

The nesting factor can vary between the following values:

– fnh(ti,e) = 1, for terms directly in elements e;
– fnh(ti,e) = 1/nd, where nd is the depth of the XML tree.

In Figure 1, we have fnh(computer,fm) = 1/(1+3). This factor reduces the con-
tribution of one term for the relevance of the elements more distant (upwards)
in the XML tree. It compensates the high frequency of a term in upwards ele-
ments caused by the nesting of the XML structure. Without this consideration
the upwards elements tend to occupy the first positions in the ranking showed
to the user.
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Fig. 1. The Nesting Factor

3.2 The Structure Factor

The Structure Factor expresses how a query with structural constraints (CAS) [7]
is satisfied by the context of the determined element. This factor values a context
that better satisfies structural constraints present in the query. Mathematically,
it is given by the relation between structural constraints in the query and the
structure of the element. It is given by:

fstr(ti, e) =
(common markups + 1)

(nr qmarkups + 1)
(4)

where,

– common markups is the number of tags presented in the query structural
constraints and also in the context of element e that contains ti;

– nr markups is the number of tags in the query structural constraints.

It can vary from:

– fstr(ti,e) = 1/(nr qmarkups+1), when no structural constraints appears in
the context of ti;

– fstr(ti,e) = 1, when all query’s structural constraints tags appears in the
context of ti.

For example, for the NEXI query in Figure 2 processed on the heterogeneous
collection, also shown in Figure 2, we obtain the following results:

For the element /artigo/pessoa/nome in the first article:

– nr qmarkups = 3;
– common markups = 2;

and

– fstr(ti, e) = (2+1)/(3+1) = 3/4.

For the element /article/person/name in the second article:

– nr markups = 3;
– common markups = 0;
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Fig. 2. The Structure Factor

and

– fstr(ti,e) = (0+1)/(3+1) = 1/4.

This factor gives more value to the element /artigo/pessoa/nome in the
first article, where fstr is equal to 3/4, and whose context better meets the
structural constraints of the query. However, it does allow that the element
/article/person /name in the second article, where fstr is equal to 1/4, is also
returned to the user, demonstrating the model’s application on heterogeneous
collections.

This is important for CAS queries, where the user specifies the elements that
will better fit his or her information need. For CO [7] queries, fstr will always be
equal to 1 because of the following:

– nr qmarkups = 0 (CO queries do not have any structural constraints);
– common markups = 0 (there are no common tags between documents and

query);

and

– fstr (ti,e) = 1.

Consequentially, in this case the factor fstr does not influence the relevance
equation.

3.3 The Co-occurrence Factor

The last factor, Co-occurrence Factor, expresses the semantic relation between
tags and their contents. To express mathematically this semantic relation, we
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applied the same principle that is used in standard vector space model to relate
terms and documents: the higher the frequency of a term in one document,
the greater the semantical relation between them. The value of this semantical
relation for a particular query depends on the frequency of terms and tags in
the collection, too. This factor is calculated as follows.

focr(ti, e) = cf(ti, e) ∗ idf(ti, e) ∗ N ∗ icf(e) (5)

where,

– cf(ti,e) is the number of times the tag of element e, denoted by m, delimits a
textual content containing term ti. In other words, number of co-occurrences
of term ti and tag m in the collection;

– idf(ti,e) is the inverse of the number of elements e that contain ti.

So, cf(ti, e)∗idf(ti, e), is the reason between the number of times term ti appears
with m for the number of the elements containing ti in the collection.

– icf(e) is the inverse of the number of times markup m appears in the collection.
– N is the total number of elements in the collection;

and

– icf(e) ∗ N express the popularity of tags m in the collection.

For example, for the NEXI query of Figure 3 processed on the heterogeneous
collection shown in Figure 3, we have the following results:

For the element /artigo/pessoa/estado in the first article:

– cf(Paulo, estado) = 1;
– idf(Paulo) = 1/4;
– icf(estado) = 1/3;
– N = 16;
– focr(Paulo, estado) = (1 ∗ 1/4) ∗ (1/3 ∗ 16) = 1.333

For the element /artigo/pessoa/nome in the second article:

– cf(Paulo, nome) = 2;
– idf(Paulo) = 1/4;
– icf(nome) = 1/3;
– N = 16;
– focr(Paulo, nome) = (2 ∗ 1/4) ∗ (1/3 ∗ 16) = 2.666.

For the element /article/person/name in the last article:

– cf(Paulo, name) = 1;
– idf(Paulo) = 1/4;
– icf(name) = 1/1;
– N = 16;
– focr(Paulo, name) = (1 ∗ 1/4) ∗ (1/1 ∗ 16) = 4.0.
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Fig. 3. The Co-occurrence Factor

The fact of /article/person/name and /artigo/pessoa/nome be returned
to the user confirms that our model can deal with heterogeneous collections. The
element /article/person/name will be presented to the user for having been
valued for its rarity within the collection. The element /artigo/pessoa/estado
will be presented to the user although it does not meet the query but obtains
the lower value of co-occurrence factor.

The co-occurrence factor values the co-occurrence of terms and tags, consid-
ering the popularity of tags. With this factor we intend to explore the character-
istic of XML originating from its definition: the presence of tags that describe
its contents.

For the effectiveness of our model, it is important that it has a narrow se-
mantic relation between terms and tags. This semantic relation will be easier in
heterogeneous collections because they present a bigger structure diversity.

To conclude, the XML Factor (fxml) explores characteristics of XML by look-
ing for the semantics of terms and information behind words.

4 Results

We submitted runs to the INEX heterogeneous track, but as the assessments
were not concluded yet at the time of writing, we have no Recall/Precision
curves to show here. It follows an answer to a query containing elements from
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Fig. 4. Adhoc Results for SVCAS and VVCAS sub tasks

many sub-collections, confirming that our model can deal with different DTDs.
For query:

//article[about(.//author,Nivio Ziviani)]

we get the following answer:

<topictopic-id=‘‘2’’> . . .
<result>

<subcollection name=‘‘ieee’’/>
<file>co/2000/ry037</file>
<path>/article[1]/fm[1]/au[1]</path>
<rank> 3</rank>

</result> . . .
<result>

<subcollection name=‘‘dblp’’ />
<file>dblp</file>
<path>/dblp[1]/article[177271]/author[4]</path>
<rank>6</rank>

</result> . . .
<result>

<subcollection name=‘‘CompuScience’’ />
<file>exp-dxf1.xml.UTF-8</file>
<path>/bibliography[1]/article[23]/author[1]</path>
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<rank> 30</rank>
</result>
. . .
<result>

<subcollectionname=‘‘hcibib’’ />
<file>hcibib</file>
<path>/file[1]/entry[229]/article[1]/author[1]</path>
<rank>139</rank>

</result>

At INEX 2005, we submitted runs to the ad-hoc track. For SVCAS and
VVCAS [6] topics, our results were in the top ten as shown in Figure 4.

Analysing these results and observing the concept of both topics, we can
conclude that our system worked better for CAS topics, where support elements
have been interpreted vaguely. It is coherent with our information retrieval view.
We have developed an approach where an element is relevant if it satisfies the
information need, irrespective of the structural constraints. We get better results
when target element constraints are strictly satisfied, showing that the structure
factor (fstr), proposed in our model, can improve performance.

5 Conclusion

In INEX 2005, we get better results than at INEX 2004, showing that our re-
search is going in a correct direction. The ability of our system to deal with
a heterogeneous collection and its results when target element constraints are
strictly satisfied shown that the structure factor (fstr) proposed in our model
can improve performance. For CO queries, specially the CO+S ones, we do get
the worst results, demanding further investigation.

For next year, we intend to participate in the heterogeneous track so that we
can really evaluate the co-occurrence factor (fcoo) and conclude if tags of XML
structure can be used to improve performance of search engines.
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Abstract. In its second year, the Interactive Track at INEX focused on address-
ing some fundamental issues of interactive XML retrieval: is element retrieval 
useful for searchers, what granularity of elements do searchers find more useful, 
what applications for element retrieval can be viable in interactive environments, 
etc.. In addition, the track also expanded by offering an alternative document 
collection, by including two additional tasks, and by attracting more participating 
groups: A total of 11 research groups and 119 test persons participated in the 
three different tasks that were included in the track. In this paper, we describe  
the main issues that the Interactive Track at INEX 2005 attempts to address and 
the methodology and tasks that were used in the track.  

1   Introduction 

The overall motivation for the Interactive Track at INEX is twofold. First, to 
investigate the behaviour of users when interacting with components of XML 
documents, and secondly to investigate and develop approaches for XML retrieval 
which are effective in user-based environments.  

One of the major outcomes of the Interactive Track in 2004 was the need to 
investigate methods that can be supportive during the search process based on 
features extracted from the XML formatting [1, 2]. Problems that might be solved 
using such methods include overlapping components, and the presentation of 
retrieved elements in the hit list. 

In the system that was offered by the track in 2005 these two issues were 
addressed. This offered us the opportunity to study how overall user search behaviour 
was affected by these changes when compared to the behaviour observed in 2004.  

In addition, the following aims were addressed in 2005 following the recommenda-
tions of the INEX Methodology Workshop at the Glasgow IR Festival1:  

• To elicit user perceptions of what is needed from an XML retrieval system. The 
aim is to see whether element retrieval is what users need: Does element retrieval 
make sense at all to users, do users prefer longer components, shorter components 
or whole documents, would they rather have passages than elements, etc.  

                                                           
1 See http://www.cs.otago.ac.nz/inexmw/ for the proceedings and presentation slides.  
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• To identify an application for element retrieval. This year, a mixture of topics that 
were simulated work tasks [3] (based on topics from the ad hoc track) and information 
needs formulated by the test persons themselves. The aim of including the latter was 
to enable studies of what characterises the tasks users formulate, and to see what kinds 
of applications users might need an element retrieval system for. A total of 121 such 
topics derived from the test persons were collected for further analysis.  

• To introduce an alternative document collection with the Lonely Planet collection 
as an optional task in order to broaden the scope of INEX and to allow test persons 
with different backgrounds (e.g. educational) to participate.  

The format of the Interactive Track in 2005 was deliberately of an exploratory nature, 
and has relatively broad aims rather than addressing very specific research questions. 
Element retrieval is still in its infancy and many basic questions remain unanswered 
as shown by the discussions at the IR Festival. Aside from the automatic and detailed 
logging of test persons as used last year, more emphasis was placed on producing 
qualitative results. Many of the aims stated above were therefore dealt with through 
careful interviewing and detailed questionnaires. A total of three tasks were available 
to the track participants: one compulsory task that all participants had to fulfil with a 
minimum number of test persons, and two optional tasks. These tasks combined 
several element retrieval systems, topic types and XML collections. By providing a 
multitude of different perspectives it is our hope that the Interactive Track can aid in 
illuminating some of the core issues in element retrieval.  

The remainder of the paper is organised as follows: The three tasks are described 
briefly in Section 2, followed by details of the participating groups in Section 3. In 
depth descriptions of Task A and Task C are given in Sections 4 and 5 respectively, 
whereas Task B is only described briefly in Section 2. Concluding remarks are given 
in Section 6. 

2   Tasks in the INEX 2005 Interactive Track  

2.1   Task A - Common Baseline System with IEEE Collection  

In this task each test person searched three topics in the IEEE collection: Two 
simulated work tasks provided by the organisers, and one formulated by the test 
person herself in relation to an information need of her own. The baseline system used 
by all participants was a java-based element retrieval system built within the Daffodil 
framework2, and was provided by the track organisers. It has a number of improve-
ments over last year's baseline system, including handling of overlaps, better element 
summaries in the hit list, a simpler relevance scale, and various supportive interface 
functionalities. Task A was compulsory for all participating groups with a minimum 
of 6 test persons.  

2.2   Task B - Participation with Own Element Retrieval System  

This task allowed groups who have a working element retrieval system to test their 
system against a baseline system. Groups participating in Task B were free to choose 
                                                           
2 See http://www.is.informatik.uni-duisburg.de/projects/daffodil/index.html.en 
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between the IEEE collection or the Lonely Planet collection, and had a large 
degree of freedom in setting up the experiment to fit the issues they wanted to 
investigate in relation to their own system. If the IEEE collection was used Daffodil 
was offered as baseline system. For the Lonely Planet collection a baseline system 
was kindly provided by the Contentlab at Utrecht University3. The recommended 
experimental setup was very close to that of Task A, with the main difference that 
simulated work tasks should be assigned to test persons rather than freely chosen. 
This in order to allow for direct comparisons between the baseline system and the 
local system.  

Task B was optional for those groups who had access to their own element 
retrieval system, and was separate from task A. Thus additional test persons needed 
to be engaged for task B. See [7] for an example of an experimental setup used in 
Task B. 

2.3   Task C - Searching the Lonely Planet Collection  

This task allowed interested groups to carry out experiments with the Lonely Planet 
collection. Each test person searched four topics which were simulated work tasks 
provided by the organisers. The system (B3–SDR) provided by Utrecht University 
was used in this task. The system is a fully functional element retrieval system that 
supports several query modes. Task C was optional for those groups who wished to 
do experiments with the new collection, and was separate from task A and B. Thus 
additional test persons needed to be engaged for task C. Note that the Lonely Planet 
collection allows for test persons that do not have a computer science background (in 
contrast to the IEEE CS collection used in Task A). 

Detailed experimental procedures including questionnaires and interview guides 
for all three tasks were provided to the participants. In addition, a specification of a 
minimum logging format was provided for local systems in Task B [8]. As for last 
year, minimum participation in the INEX Interactive Track did not require a large 
amount of work as the baseline system for Task A was provided by the track. The 
bulk of the time needed for participating groups was spent on running the 
experiments; approximately 2 hours per test person.  

3   Participating Groups 

A total of 12 research groups signed up for participation in the Interactive Track and 
11 completed the minimum number of required test persons. Their affiliations and 
distribution on tasks are given in Table 1 below. All 11 groups participated in Task A 
with a total of 76 test persons searching on 228 tasks. Only one group, University of 
Amsterdam, participated in Task B with 14 test persons searching on 42 tasks. Four 
groups participated in Task C with 29 test persons searching 114 tasks. A total of 119 
test persons from the 11 active participants took part in the Interactive Track. In 
comparison, in 2004, 10 groups took part with 88 test persons. 

                                                           
3 See http://contentlab.cs.uu.nl/  
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Table 1. Research groups participating in the Interactive Track at INEX2005 

 Task A Task B Task C 

Research Group 
Test Persons 

(Topics) 
Test Persons 

(Topics) 
Test Persons 

(Topics) 

CWI, University of Twente, The Netherlands 6 (18) - - 

Kyungpook National University, Korea 12 (36) - - 

Oslo University College, Norway 8 (24) - - 

Queen Mary University of London, England 6 (18) - - 

RMIT University, Australia 6 (18) - 12 (48) 

Royal School of LIS, Denmark 6 (18) - 6 (24) 

Rutgers University, USA 6 (18) - 4 (16) 

University of Amsterdam, The Netherlands 6 (18) 14 (42) - 

University of Duisburg-Essen, Germany 6 (18) - - 

University of Tampere, Finland 8 (24) - - 

Utrecht University, The Netherlands 6 (18) - 7 (26) 

Total 76 (228) 14 (42) 29 (114) 

4   Task A 

4.1   Document Corpus 

The document corpus used in Task A was the 764 MB corpus of articles from the 
IEEE Computer Society’s journals covering articles from 1995-2004 (version 1.8, 
merged new & old collection).  

4.2   Relevance Assessments 

The intention was that each viewed element should be assessed with regard to its 
relevance to the topic by the test person. This was, however, not enforced by the 
system as we believe that it may be regarded as intrusive by the test persons [4]. In 
addition, concerns have been raised that last year’s composite two dimensional scale 
was far too complex for the test persons to comprehend [5, 6]. Therefore it was 
chosen to simplify the relevance scale, also in order to ease the cognitive load on the 
test persons. The scale used was a simple 3-point scale measuring the usefulness (or 
pertinence) of the element in relation to the test person’s perception of the task: 

2 – Relevant 
1 – Partially Relevant 
0 – Not Relevant 

Please note that in contrast to the assessments made for the ad hoc track, there was no 
requirement on the test persons to view each retrieved element as independent from 
other viewed components. We have chosen not to enforce any rules in order to allow 
the test persons to behave as close as possible to what they would normally do. 

For Task C we experimented with a slightly more complex relevance scale (see 
Section 6.2 below). 
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4.3   System 

The baseline system used in Task A was a Java-based element retrieval system built 
within the Daffodil framework. The HyREX retrieval engine4 was used as backend in 
the baseline system. 

Fig. 1 shows the query and results list interface of the baseline system. After 
entering a query and pressing “Search” a search progress indicator informed the test 
person about the number documents found. A related term list also appeared, suggest-
ing alternative search terms (not shown). The results were presented as documents and 
in some cases, the system indicated which elements that might be most closely related 
to the query. 

 

Retrieved
document

Retrieved
elements

Query
fields

 

Fig. 1. Query box and result list display in the baseline system used in Task A 

Double-clicking a document or an element opened this in a new window as shown 
in Fig. 2 below. This was split in two panes: one with a Table of Contents of the 
whole document, and one with the full text of the selected element. The selected 

                                                           
4 http://www.is.informatik.uni-duisburg.de/projects/hyrex/ 
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element was displayed on the right. On the left, the Table of Contents indicated the 
currently viewed element, other retrieved elements, viewed and assessed elements. 
The relevance scale was implemented as simple icons to be clicked: 

 
- Relevant 

 - Partially Relevant 

 - Not Relevant 

The logging in the baseline system was saved to a database for greater flexibility and 
stability. The log data comprises of one session for each topic the test person 
searches. The log for each session recorded the events in the session, both the actions 
performed by the test person and the responses from the system.  

4.4   Tasks/Topics 

In order to study the questions outlined in Section 1 above related to the needs for 
element retrieval systems and possible applications of such systems, both real and 
simulated information needs were used in Task A. 

The test persons were asked to supply examples of own information needs. As it 
may be hard for the test persons to formulate topics that are covered by the collection, 
the test persons emailed two topics they would like to search for 48 hours before the 
experiment. The experimenters then did a preliminary search of the collection to 
determine which topic had the best coverage in the collection. The topics supplied by 
the test persons were not all well-suited to an element retrieval system, but they all 
had a valuable function as triggers for the structured interview where it was attempted 
to elicit user perceptions of what they need from an element retrieval system, and to 
identify possible applications for element retrieval. They may also be valuable for the 
formulation of topics for next year’s track. Therefore, both topics were recorded and 
submitted as part of the results.  

The simulated work tasks were derived from the CO+S and CAS INEX 2005 ad-
hoc topics, ignoring any structural constraints. In order to make the topics comprehen-
sible by other than the topic author, it was required that the ad hoc topics not only 
detail what is being sought for, but also why this is wanted, and in what context the 
information need has arisen. This information was exploited for creating simulated 
work task situations for Task A that, on the one hand will allow the test persons to 
engage in realistic searching behaviour, and on the other provide a certain level of 
experimental control by being common across test persons5.  

For Task A, six topics were selected and modified into simulated work tasks. In 
last year’s track we attempted to identify tasks of different types and to study the 
difference between them, but without great success. This year a simple partition has 
been made into two categories: 

                                                           
5 See the work of Borlund for more information on simulated work tasks, e.g. Borlund, 2003 

(http://informationr.net/ir/8-3/paper152.html). 
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• General tasks (G category), and 
• Challenging tasks (C category), which are more complex and may be less 

easy to complete. 

In addition to their own information need, each test person chose one task from each 
category. This allows the topic to be more “relevant” and interesting to the test 
person. A maximum time limit of 20 minutes applied for each task. Sessions could 
finish before this if the test person felt they have completed the task. 

 

Fig. 2. Full text result in the baseline system used in Task A 

4.5   Experimental Design 

4.5.1   Experimental Matrix 
A minimum of 6 test persons from each participating site were used. Each test person 
searched on one simulated work task from each category (chosen by the test person) 
as well as one of their own topics. The order in which task categories were performed 
by searchers was permuted in order to neutralise learning effects. This means that one 
complete round of the experiment requires 6 searchers.  

The basic experimental matrix looked as follows: 

Rotation 1: OT, STG, STC 
Rotation 2: STC, OT, STG 
Rotation 3: STG, STC, OT 
Rotation 4: STG, OT, STC 
Rotation 5: STC, STG, OT 
Rotation 6: OT, STC, STG 
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Where OT = Own task, and STG, STC are the two 2 simulated work task categories. 
As can be seen from Table 1 above some groups did more than 6 test persons. It was 
attempted to coordinate the permutation rotations across these groups to arrive at an 
equal distribution of across the track.  

4.5.2   Experimental Procedure 
The experimental procedure for each test person is outlined below.  

1. Experimenter briefed the searcher, and explained the format of the study 
2. Tutorial of the system was given with a training task, and experimenter answered 

any questions 
3. ‘Instructions to searchers’ handed out 
4. Any questions answered by the experimenter 
5. Entry questionnaire handed out 
6. Task description for the first category handed out, and a task selected  
7. Pre-task questionnaire handed out 
8. Task began, and experimenter logged in. Max. duration 20 minutes. Experimenter 

logged out. 
9.  Post-task questionnaire handed out 
10. Steps 7-10 were repeated for the two other tasks 
11. Post-experiment questionnaire handed out 
12. Interview 

The system training, the three tasks and completion of questionnaires and interview 
were performed in one, continuous session. An ‘Instructions to searchers’ document 
gave information to the searchers about the experiment and their role in it, including 
basic information about system information, an outline of the experimental procedure, 
and how to assess elements for relevance. A number of questionnaires and guidelines 
for post-experiment interviews were provided by the track organisers. The purpose of 
the semi-structured interview was to attempt to elicit user perceptions of what they 
need from an element retrieval system, and to identify possible applications for 
element retrieval.  

5   Task C 

Task C was optional for those groups who wished to experiment with the Lonely 
Planet collection, and was separate from Task A and B. Thus additional test persons 
needed to be engaged for Task C. Task C was meant as an exploratory task to initiate 
interactive experiments with the LP collection.  

5.1   Document Corpus 

The document corpus used in Task C was the Lonely Planet collection. The Lonely 
Planet collection consists of 462 XML documents with information about destina-
tions, which is particularly useful for travellers that want to find interesting details for 
their next holiday or business trip. The collection is called the "WorldGuide" and has 
been provided by the publishers of the Lonely Planet guidebooks. The collection not 
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only contains useful information about countries, but also includes information about 
interesting regions and major cities. For each destination an introduction is available, 
complemented with information about transport, culture, major events, facts, and an 
image gallery that gives an impression of the local scenery. 

5.2   Relevance Assessments in Task C 

A slightly more complex approach was taken for the collection of relevance 
assessments in Tack C. The two-dimensional relevance scale was a modified version 
of a scale proposed at the INEX Methodology Workshop at the Glasgow IR Festival 
[6]. The relevance assessments were explained to the test persons as follows: 

Two different dimensions are used to assess the relevance of an XML document 
component. The first determines the extent to which a document component contains 
relevant information for the search task. It can take one of the following three values: 
highly relevant, somewhat relevant, and not relevant. A document component is 
highly relevant if it covers aspects of the search task without containing too much 
non-relevant information. A document component is somewhat relevant if it covers 
aspects of the search task and at the same time contains much non-relevant 
information. A document component is not relevant if it does not cover any aspect of 
the search task.  

The second relevance dimension determines the extent to which a document 
component needs the context of its containing XML document to make full sense as 
an answer. It can take one of the following three values: just right, too large, and too 
small. A document component is just right if it is reasonably self-contained and it 
needs little of the context of its containing XML document to make full sense as an 
answer. Alternatively, the document component can be either too large or too small. 
A document component is too large if it does not need the context of its containing 
XML document to make full sense as an answer. A document component is too small 
if it can only make full sense within the context of its containing XML document. 

Given the above relevance values, the final assessment score of a document 
component can take one of the following five values: 

• Not Relevant (NR) – if the document component does not cover any aspect of 
the search task; 

• Partial Answer (PA) – if the document component is somewhat relevant (i.e. 
covers only some aspects of the search task) and just right (i.e. it is reasonably 
self-contained but still needs some of the context of its containing XML 
document to make full sense); 

• Exact Answer (EA) – if the document component is highly relevant (i.e. covers 
all, or nearly all, aspects of the search task without containing too much non-
relevant information) and just right;  

• Broad Answer (BA) – if the document component is either highly or somewhat 
relevant and too large (i.e. it is reasonably self-contained and does not really 
need the context of its containing XML document to make full sense); and 

• Narrow Answer (NA) - if the document component is either highly or somewhat 
relevant and too small (i.e. it is not self-contained and can only make full sense in 
the context of its containing XML document). 
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The test persons could select one of these values from a T-shaped relevance 
assessment box as shown in Fig. 4 and Fig. 5. 

5.3   System 

An interactive system for Task C was provided by Utrecht University. It is a fully 
functional element retrieval system which has been configured to suit Task C. There 
were two versions of the system: One which presented the results in context of the full 
text (i.e., highlighted), and an alternative version which presented the results in 
isolation. Fig. 3 shows the query ad result list interface common to both system 
versions. Fig. 4 and 5 shows the interface for the versions which showed results in 
context and isolated respectively. 

5.4   Tasks/Topics 

Eight topics that have previously been used for experiments with the Lonely Planet 
WorldGuide were selected and modified into short simulated work tasks for Task C. 
The tasks were arbitrarily split into 2 categories, and each test person searched two 
tasks from each category.  

 

Fig. 3. Query box and result list display used in Task C 

Query 
field 

Result 
list 

Links  
to text 
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Fig. 4. Task C system version which presented the results highlighted in context of the full text 

 

Fig. 5. Task C system version which presented the results in isolation 
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5.5   Experimental Design 

A minimum of 4 test persons from each participating group were used in Task C. 
Each test person searched two simulated work tasks (chosen by the test person) from 
each of the two categories – a total of four per test person. The order in which task 
categories were performed was permuted in order to neutralise learning effects. This 
means that one complete round of the experiment required 4 searchers.  

The basic experimental matrix looks as follows: 

Rotation 1: Iso-C1, Cxt-C2 
Rotation 2: Iso-C2, Cxt-C1 
Rotation 3: Cxt-C1, Iso-C2 
Rotation 4: Cxt-C2, Iso-C1 

Where Iso = system with isolated results, and Cxt = system with results in context. C1 
and C2 were the two simulated work task categories. The experimental procedure was 
very similar to the one used in Task A. However, no interview was conducted at the 
end of the experiment. A number of questionnaires were provided by the track 
organisers. 

6   Concluding Remarks 

In its second year, the Interactive Track at INEX looked into some fundamental 
questions surrounding interactive XML retrieval: does element retrieval make sense at 
all, do searchers prefer full-text to element retrieval, what applications could exist for 
interactive XML retrieval? In addition, the track also expanded by including two 
additional tasks and by attracting more participating groups. A total of 11 research 
groups and 119 test persons participated in the three different tasks that were included 
in the track. 

In this paper, we have described the main issues that the Interactive Track at INEX 
2005 attempts to address and the methodology and tasks that were used in the track. 
The data has now been released and it is the task of the participating groups to analyse 
and publish results from the track.  

Acknowledgments 

As track organisers we would like to thank the participating research groups for their 
work and input concerning the format of the track. In addition, we would like to thank 
Pia Borlund from the Royal School of Library and Information Science for help on 
constructing simulated work tasks, Claus-Peter Klas from University of Duisburg-
Essen for help in running Daffodil, Roelof van Zwol, Sandor Spruit and Jeroen Baas, 
Utrecht University, for making their system available for Task C, and finally Jovan 
Pehcevski and co-workers for developing their relevance scale for use in the 
interactive track. Finally, we would like to thank Lonely Planets Publications Pty Ltd 
and the IEEE Computer Society for access to their data.  



410 B. Larsen, S. Malik, and A. Tombros 

References 

1. Tombros, A., Larsen, B. and Malik, S. (2005): The Interactive Track at INEX 2004. In: 
Fuhr, N., Lalmas, M., Malik, S. and Szlávik, Z. eds. Advances in XML Information 
Retrieval: Third International Workshop of the Initiative for the Evaluation of XML 
Retrieval, INEX 2004, Dagstuhl Castle, Germany, December 6-8, 2004, Revised Selected 
Papers. Berlin: Springer, p. 410-423. (Lecture Notes in Computer Science; 3493) 

2. Larsen, B., Tombros, A., and Malik, S. (2004): Interactive Track Workshop Report. Slides 
presented at the INEX Workshop, December 2004 [http://inex.is.informatik.uni-
duisburg.de:2004/workshop.html#Reports] 

3. Borlund, P. (2003): The IIR evaluation model: a framework for evaluation of interactive 
information retrieval. In: Information Research, vol. 8, no. 3, paper no. 152. [Available at: 
http://informationr.net/ir/8-3/paper152.html] 

4. Larsen, B., Tombros, A. and Malik, S. (2005): Obtrusiveness and relevance assessment in 
interactive XML IR experiments. In: Trotman, A., Lalmas, M. and Fuhr, N. eds. 
Proceedings of the INEX 2005 Workshop on Element Retrieval Methodology, held at the 
University of Glasgow, 30 July 2005. Second Edition. Dunedin (New Zealand): Department 
of Computer Science, University of Otago, p. 39-42. [http://www.cs.otago. 
ac.nz/inexmw/Proceedings.pdf, visited 15-12-2005]  

5. Pharo, N. and Nordlie, R. (2005): Context matters: an analysis of assessments of XML 
documents. In: Crestani, F. and Ruthven, I. eds. Context: Nature, Impact, and Role : 5th 
International Conference on Conceptions of Library and Information Science, CoLIS 2005, 
Glasgow, UK, June 2005, Proceedings. Berlin: Springer, p. 238-248. (Lecture Notes in 
Computer Science; 3507) 

6. Pehcevski, J., Thom, J. A. and Vercoustre, A.-M. (2005): Users and assessors in the context 
of INEX: Are relevance dimensions relevant? In: Trotman, A., Lalmas, M. and Fuhr, N. eds. 
Proceedings of the INEX 2005 Workshop on Element Retrieval Methodology, held at the 
University of Glasgow, 30 July 2005. Second Edition. Dunedin (New Zealand): Department 
of Computer Science, University of Otago, p. 47-62. [http://www.cs.otago.ac. 
nz/inexmw/Proceedings.pdf, visited 15-12-2005]  

7. Kamps, J., de Rijke, M. and Sigurbjörnsson, B. (2005): What do Users Think of an XML 
Element Retrieval System?. In: This volume. 

8. Klas, C.P., Albrechtsen, H., Fuhr, N., Hansen, P., Jacob, E., Kapidakis, S., Kovacs, L., 
Kriewel, S., Micsik, A., Papatheodorou, C., Tsakonas, G. (2006).: An Experimental 
Framework for Comparative Digital Library Evaluation: The Logging Scheme. (Submitted 
for publication). 



What Do Users Think of an
XML Element Retrieval System?

Jaap Kamps1,2 and Börkur Sigurbjörnsson2

1 Archives and Information Science, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

Abstract. We describe the University of Amsterdam’s participation in
the INEX 2005 Interactive Track, mainly focusing on a comparative ex-
periment, in which the baseline system Daffodil/HyREX is compared
to a home-grown XML element retrieval system (xmlfind). The xmlfind
system provides an interface for an XML information retrieval search
engine, using an index that contains all the individual XML elements
in the IEEE collection. Our main findings are the following. First, test
persons show appreciation for both systems, but xmlfind receives higher
scores than Daffodil. Second, the interface seems to take the structural
dependencies between retrieved elements into account in an appropriate
way: although retrieved elements may be overlapping in whole or in part,
none of the test persons regarded this as problematic. Third, the general
opinion of the test persons on the usefulness of XML retrieval systems
was unequivocally positive, and their responses highlight many of the
hoped advantages of an XML retrieval system.

1 Introduction

In this paper we document the University of Amsterdam’s participation in the
INEX 2005 Interactive Track. We conducted two experiments. First, we took part
in the concerted effort of Task A, in which a common baseline system, Daffodil/-
HyREX, is used to study test-persons searching the IEEE collection. Second, as
part of the Interactive Track’s Task B, we conducted a comparative experiment,
in which the baseline retrieval system, Daffodil/HyREX, is contrasted with our
home-grown XML element retrieval system, xmlfind.

The rest of the paper is organized as follows. Next, Section 2 documents the
XML retrieval systems used in the experiment. Then, in Section 3, we detail
the setup of the experiments. The results of the experiments are reported in
Section 4, where we focus almost exclusively on the comparative experiment.
Finally, in Section 5, we discuss our findings and draw some initial conclusions.

2 XML Retrieval Systems

2.1 Baseline System: Daffodil

The Daffodil system is developed to support the information seeking process in
Digital Libraries [1]. As a back-end, the HyREX XML retrieval system was used
[2]. For details, see [3].

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 411–421, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. Experimental matrix for the comparative experiment

# Rotation Task 1 Task 2 Task 3
Task System Task System Task System

1 1 G-1 Daffodil C-1 xmlfind Own choice
2 2 C-1 Daffodil G-1 xmlfind Own choice
3 3 G-1 xmlfind C-1 Daffodil Own choice
4 4 C-1 xmlfind G-1 Daffodil Own choice
5 1 G-2 Daffodil C-2 xmlfind Own choice
6 2 C-2 Daffodil G-2 xmlfind Own choice
7 3 G-2 xmlfind C-2 Daffodil Own choice
8 4 C-2 xmlfind G-2 Daffodil Own choice
9 1 G-3 Daffodil C-3 xmlfind Own choice

10 2 C-3 Daffodil G-3 xmlfind Own choice
11 3 G-3 xmlfind C-3 Daffodil Own choice
12 4 C-3 xmlfind G-3 Daffodil Own choice
13 1 G-1 Daffodil C-1 xmlfind Own choice
14 2 C-1 Daffodil G-1 xmlfind Own choice

2.2 Home-Grown System: xmlfind

The xmlfind system provides an interface for an XML information retrieval
search engine [4]. It runs on top of a Lucene search engine [5]. The underly-
ing index contains all the individual XML elements in the IEEE collection [6].

Figure 1(top) shows the search box and the result list. The results are grouped
per article, where (potentially) relevant elements are shown. A partial view of
the document tree, linking retrieved elements to the article root element, is
shown. Small text excerpts, or text snippets or teasers, containing query words
are generated to give a preview of the XML element’s content. Clicking on any
of the elements will open a new window displaying the result. Figure 1(bottom)
shows the full article with the focus on the selected element. The results display
window has three planes. On the left plane, there is a Table of Contents of the
whole article. On the right plane, the article is displayed with the selected part
of the document in view. On the top plane, the article’s title, author, etc. are
displayed, as well as a menu for assessing the relevance of the result (added
specifically for the Interactive experiments reported in this paper).

3 Experimental Setup

The whole experiment was run in a single session where test persons for both
Task A and Task B worked in parallel. The test persons were first year Computer
Science students.

3.1 Task A: Community Experiment

Task A is the orchestrated experiment in which all teams participating in the
Interactive Track take part [3]. We participated in Task A with six test persons,
who searched the IEEE Collection with theDaffodil/HyREX baseline system.
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Fig. 1. Screen shots of xmlfind: (top) result list, (bottom) detailed view
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Table 2. Topic created by test person

A. What are you looking for?
Who build the first computer and what did it look like?
B. What is the motivation of the topic?
I would like to know how the history of the computer began
and what the first computer looked like, was it very big or
very small, did it have a monitor?
C. What would an ideal answer look like?
The name of the inventor and a picture of how the first com-
puter looked.

There were three tasks: two simulated work tasks (a ‘general’ task and a ‘chal-
lenging’ task) and the test person’s were asked to think up a search topic of
their own. The experiment was conducted in accordance with the guidelines, for
further details we refer to [3].

3.2 Task B: Comparative Experiment

Task B is a comparison of the home-grown xmlfind system with the Daffodil/Hy-
REX baseline system. We participated in Task B with fourteen test persons. The
experimental setup largely resembles the setup of Task A. Again, test persons
did two simulated work tasks (a ‘general’ and a ‘challenging’ task) and they
searched for a topic they were asked to think up themselves. The experimental
matrix is shown in Table 1. Every test person searched for two simulated tasks,
each one with a different system, following a standard two treatment matrix.
Next, the test persons searched for their own topic with a system of their choice.

Due to the number of test persons involved, we were unable to conduct
individual exit interviews. Instead, we used an extended post-experiment
questionnaire.

4 Results

A large amount of data was collected during the experiments. Each test person
searched with four different accounts, one for each task, plus one or two addi-
tional accounts for training. This generated in total 94 search logs (24 for Task A
and 70 for Task B). In additional, each person filled in questionnaires before and
after each task, and before and after the experiment, resulting in, in total, 160
questionnaires (48 for Task A and 112 for Task B). For a discussion of the results
of Task A, we refer to the INEX 2005 Interactive track overview paper [3]. Here,
we will focus on the results for the comparative evaluation in Task B.

4.1 Own Topics

As part of the experiments, test persons were asked to think up a search topic of
their own interest, based on a short description of the IEEE collection’s content.
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Some topics created by test persons were excellent. Table 2 shows an example
of a topic being (i) within the collection’s coverage, (ii) reflecting a focused
information need, and (iii) even containing potential structural retrieval cues.
However, most topic were not so perfect. Even though test persons were asked to
think up two different topics, almost half of the test persons (9 out of 20) did not
create a very suitable topic. At least six topics addressed very practical advice on
computer components or software, typically the sort of computer science related
issues that users may search for on the web (targeting product reviews, FAQs
or discussion boards). Examples of such created topics are Latest video cards
for best performance gaming or How to integrate .net applications in corporate
environments. Evidently, the IEEE Computer Society journals are not the most
likely place to find relevant information for these topics. At least three topics
were clearly outside the scope of the collection. Examples are How many flights
go from New York to Los Angeles a day? and How much energy does a rocket
use to orbit? Again, it is unlikely to find relevant information for these topics in
the collection at hand. Perhaps more positively, the vast majority of the topics
developed by our test persons were focused, asking for very specific information
that could, in principle, be contained in a relatively short piece of text.

4.2 Information Seeking Behavior

During search, we logged the behavior of the test persons. Here, we will report
on data from the xmlfind logs. In total, we have 24 sessions with xmlfind (see
the experimental matrix in Table 1). In these 24 sessions, the test persons issued
91 queries in total, leading to an average of 3.8 queries per task. In the result
list, a total of 172 elements were selected for further inspection. Note that this
is, on average, only 1.9 per query, indicating that test-persons consulted only
information from a very small number of articles. If we break down this number
by the entry point into the article, we see that in 77 cases (44.8%) a test person
selected an element, and in 95 cases (55.2%) an article was selected. That is,
the test persons do use the option to deep-link particular XML elements in
the articles. Finally, we asked the test persons, only once per viewed article,
to give their assessment of its usefulness. We gathered 141 assessments in this
way, which is 92.8% of all articles which were read in whole or in part. If we
break down these judgments, we see that in 54 cases (38.3%) the article was
regarded as not relevant, in 22 cases (15.6%) the whole article was regarded as
relevant, and in the remaining 65 cases (46.1%) only parts of the article were
regarded as relevant. Especially the last category, where relevant information is
retrieved from an off-topic article, clearly demonstrates the potential of focused
XML element retrieval techniques.

4.3 Appreciation of the Searching Experience

After each completed task, test persons filled in a questionnaire. There were a
number of questions on the testperson’s satisfaction:



416 J. Kamps and B. Sigurbjörnsson

Table 3. Responses on user satisfaction: mean scores and standard deviations (in
brackets). Answers were on a 5-point scale, ranging from 1 (“Not at all”) to 5
(“Extremely”).

Q3.1 Q3.2 Q3.3 Q3.4 Q3.5
All tasks 3.4 (1.1) 3.0 (1.4) 3.1 (2.2) 3.2 (2.0) 3.6 (0.7)
First task 3.4 (1.2) 3.1 (1.1) 3.0 (2.5) 3.3 (1.9) 3.6 (0.4)
Second task 3.3 (1.5) 2.9 (1.5) 3.2 (1.6) 3.3 (1.3) 3.6 (0.4)
First two tasks 3.4 (1.1) 3.0 (1.1) 3.2 (2.1) 3.3 (1.6) 3.6 (0.4)
General task 3.4 (1.2) 2.9 (1.1) 3.1 (2.2) 3.1 (2.1) 3.9 (0.4)
Challenging task 3.4 (1.2) 3.1 (1.2) 3.3 (2.1) 3.5 (1.2) 3.4 (0.3)
Own task 3.4 (1.2) 3.0 (2.0) 3.1 (2.7) 3.1 (2.8) 3.5 (1.3)
Daffodil (task C and G) 3.1 (0.7) 2.7 (0.5) 3.1 (2.1) 3.1 (1.8) 3.6 (0.3)
xmlfind (task C and G) 3.6 (1.5) 3.4 (1.6) 3.3 (2.2) 3.5 (1.5) 3.7 (0.5)
Daffodil (first task) 3.0 (0.6) 3.0 (0.6) 3.3 (3.1) 3.4 (2.6) 3.8 (0.2)
Daffodil (second task) 3.2 (1.0) 2.3 (0.3) 2.8 (1.0) 2.8 (1.0) 3.3 (0.3)
xmlfind (first task) 4.0 (0.8) 3.5 (1.1) 3.0 (2.8) 3.3 (1.9) 3.5 (0.7)
xmlfind (second task) 3.4 (2.0) 3.3 (2.2) 3.5 (2.0) 3.6 (1.4) 3.9 (0.4)

Q3.1 Was it easy to get started on this search?
Q3.2 Was it easy to do the search on the given task?
Q3.3 Are you satisfied with your search results?
Q3.4 Do you feel that the task has been fulfilled?
Q3.5 Do you feel that the search task was clear?

Table 3 shows the responses of the test persons. First, we look at the responses
over all sessions. The test persons are fairly positive with average results in the
range 3.0 to 3.6. Second, we look at responses for the different tasks. Here we
see that the reponses for the first and second task are comparable, and in sync
with the overall responses. The third task was always the Own task. When
we look at the responses for the different task types, General, Challenging, or
Own, we see a similar pattern as for the two simulated work tasks. Interestingly,
the General task is regarded as clearer (Q3.5), but the search results for the
Challenging task are valued higher (Q3.3 and Q3.4). The responses for Own
task are surprizing: although formulated by the test person herself, they are
not regarded as clearer (Q3.5). The responses for the Own task are, on av-
erage, similar to the simulated work tasks. The standard deviation, however,
is much larger. The reason for this seems to be the inability of a large frac-
tion of test persons to come up with a topic that is suitable for the collection
at hand. Third, we look at the responses for the different search engines, fo-
cusing on the simulated work tasks where a proper matrix was used. Over all
sessions with the search engines, xmlfind was regarded as easier to use (Q3.1
and Q3.2), and more effective (Q3.3 and Q3.4) than Daffodil. We also look at
whether earlier experience with the other search engine did influence the re-
sponses. We see that responses for the first task, either using Daffodil or using
xmlfind, are much closer; Daffodil gets higher scores on effectiveness (although
the standard deviation is large). However, we see that test persons that used
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Table 4. Responses on searching experience: mean scores and standard deviations
(in brackets). Answers were on a 5-point scale, ranging from 1 (“Not at all”) to 5
(“Extremely”).

Q3.9 Q3.10 Q3.11 Q3.12 Q3.13
All tasks 3.2 (1.4) 3.0 (1.3) 3.3 (1.0) 3.4 (1.4) 3.4 (1.3)
First task 3.1 (1.8) 3.0 (1.4) 3.2 (1.3) 3.4 (1.6) 3.6 (1.6)
Second task 3.0 (1.4) 3.0 (0.8) 3.4 (0.9) 3.3 (1.0) 3.5 (0.7)
First two tasks 3.1 (1.5) 3.0 (1.0) 3.2 (0.9) 3.4 (1.3) 3.4 (1.3)
General task 2.8 (1.6) 2.6 (1.0) 3.2 (1.1) 3.1 (1.6) 3.4 (1.5)
Challenging task 3.4 (1.3) 3.4 (0.7) 3.2 (0.8) 3.6 (1.0) 3.4 (1.2)
Own task 3.5 (1.3) 3.0 (2.0) 3.5 (1.2) 3.5 (1.5) 3.2 (1.3)
Daffodil (task C and G) 2.9 (1.5) 2.8 (1.1) 3.2 (0.8) 3.4 (1.5) 3.3 (1.8)
xmlfind (task C and G) 3.2 (1.6) 3.2 (1.0) 3.2 (1.1) 3.3 (1.3) 3.6 (0.9)
Daffodil (first task) 3.1 (1.6) 2.9 (1.3) 3.3 (0.8) 3.6 (2.3) 3.4 (2.6)
Daffodil (second task) 2.7 (1.5) 2.7 (1.1) 3.2 (1.0) 3.2 (0.6) 3.2 (1.0)
xmlfind (first task) 3.2 (2.2) 3.2 (1.8) 2.8 (1.4) 3.2 (1.4) 3.3 (1.5)
xmlfind (second task) 3.3 (1.4) 3.3 (0.5) 3.5 (0.9) 3.4 (1.4) 3.8 (0.5)

Daffodil for the first task, were more positive than those that used Daffodil for
the second task (after searching with xmlfind for the first task). Conversely,
the test persons that used xmlfind for the second task (after using Daffodil for
the first task), were more positive than those that used xmlfind for the first
task.1

The questionnaire also contained a number of questions on the search expe-
rience of the test persons:

Q3.9 How well did the system support you in this task?
Q3.10 On average, how relevant to the search task was the information pre-

sented to you?
Q3.11 Did you in general find the presentation in the result list useful?
Q3.12 Did you find the parts of the documents in the result list useful?
Q3.13 Did you find the Table of Contents in the Full Text view useful?

Table 4 shows the responses, using a similar breakdown as before. First, we
look at responses over all sessions. The test persons are again fairly positive
with averages ranging from 3.0 to 3.4. Second, we look at responses for the dif-
ferent tasks. Responses for the first and second simulated work task are very
similar to the overall responses. When we look at the three task types, we
see that the responses for the General task deviate for system support (Q3.9)
and relevance (Q3.10). Perhaps suprizingly the systems are more appreciated

1 Here, we compare the responses of different test persons, and hence it may be the
case that test persons starting with Daffodil were simply more positive than those
starting with xmlfind. Note, however, that the group starting with Daffodil gave
higher scores to xmlfind in the second task, and the group starting with xmlfind
gave Daffodil lower scores in the second task.
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Table 5. Responses on the system comparison: mean scores and standard deviations
(in brackets). Answers were on a 5-point scale, ranging from 1 (“Not at all”) to 5
(“Extremely”). Statistical significance is based on a paired t-test (two-tailed).

Q4.4 Q4.5 Q4.6
Daffodil 3.1 (0.9) 2.9 (1.1) 3.4 (0.6)
xmlfind 4.2 (0.8) 4.2 (0.3) 4.2 (0.3)
Significance p < 0.01 p < 0.001 p < 0.05

for the Challenging task than for the General task. Responses for the Own
task, always searched after the two simulated work tasks, do not differ much
from the overall responses. Third, we look at responses for the diffent systems.
We see that both systems receive comparable scores on the presentation issues
(Q3.11, Q3.12, and Q3.13). There is, however, a marked difference in the re-
sponses for support (Q3.9) and relevance (Q3.10), where xmlfind is prefered
over Daffodil. When looking at the interaction between the search experience
for both systems, we see, again, that earlier exposure to xmlfind leads to lower
scores for Daffodil, and earlier exposure to Daffodil leads to higher scores for
xmlfind.

4.4 Comparative Evaluation

Test persons in Task B were free to select with which of the two system they
searched for the third topic. Out of the 14 test persons, 4 (28.6%) choose to
search with the Daffodil/HyREX system, the other 10 (71.4%) choose to search
with the xmlfind system.

In the post-experiment questionnaire, each test person was asked a number
of questions about the two systems that they used:

Q4.4 How easy was it to learn to use the system?
Q4.5 How easy was it to use the system?
Q4.6 How well did you understand how to use the system?

Table 5 shows the responses of the test persons. We see that the test per-
sons give a significantly higher score to xmlfind with respect to the easiness to
learn (Q4.4), the easiness to use (Q4.5), and the understandability of the system
(Q4.6).

4.5 General Views

As part of the extended post-experiment questionnaire, test persons in Task B
were asked a number of questions about their opinions on the concept of an
XML retrieval engine. Table 6 lists the responses to two of the questions, where
each row represents the same test person. The responses where unequivocally
positive, and the responses highlight many of the hoped advantages of an XML
retrieval system.
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Table 6. Responses on the usefulness of focused retrieval

13. Did you like the idea that the search
engine takes into account the structure of
the documents? Why?

14. Do you find it useful to be pointed to
relevant parts of long articles? Why?

Yes, you will have a good overview of the
total article/document.

Yes, because you are able to see which ar-
ticles are worth reading and which are not.

Yes, for specific information this is very
useful.

Yes, gives the user an idea about the arti-
cle in question.

Yes, easier to see how long the article is. You don’t need to see other parts.
Yes, its easier to see the contents of the
document, better navigation.

Yes, you don’t have to dig into the article
yourself.

Yes, it didn’t bother me. Yes, it’s more easy to find what you’re
looking for.

Yes, less reading time, clear overview. Yes, saves time.
Yes, it shortens search time. Yes, because if scan-read long articles, you

easily miss some relevant parts.
Yes, saves work. Yes, works faster.
Yes, because its much faster. Yes, its faster.
Yes, this way of finding information takes
less time.

Yes, now you don’t have to read the whole
article. You can get straight to the part
where the information is.

Yes, its easier to see where relevant infor-
mation is located.

Yes, it takes less time to find the relevant
parts.

Yes, it makes it easier to find specific para-
graphs.

Yes, if programmed right it can save time.

Yes, it makes it a lot easier to find what
you are looking for.

Yes, it is lots more easier.

Yes, because makes me have to search less. Yes, to search less.

5 Discussion and Conclusions

This paper documents the University of Amsterdam’s participation in the INEX
2005 Interactive Track. We participated in two tasks. First, we participated in
the concerted effort of Task A, in which a common baseline system, Daffodil/-
HyREX, was used by six test-persons to search the IEEE collection. Second, we
conducted a comparative experiment in Task B, in which fourteen test persons
searched alternately with the baseline retrieval system, Daffodil/HyREX, and
our home-grown XML element retrieval system, xmlfind.

We detailed the experimental setup of the comparative experiment. Both ex-
periments, involving twenty test persons in total, were conducted in parallel in a
single session. This ensured that the experimental conditions for all test persons
are very equal. Unplanned external causes, such as the down-time of the Daffo-
dil/HyREX system equally affected all test persons. Due to the large number of
test persons present at the same time, we had to minimize the need for experi-
menter assistance. This was accomplished by generating personalized protocols
for all test persons. In these protocols, test persons were guided through the
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experiment by means of verbose instructions on the transitions between differ-
ent tasks. Four experimenters were available, if needed, to clarify the instructions
or provide other assistance. This worked flawlessly, and allowed us to handle the
large numbers of test persons efficiently.

A large amount of data was collected during the experiments, both in
questionnaires and in search log files. In this paper we focused mainly on the
results of the comparative experiment. As for the comparison between the Daf-
fodil/HyREX system and the xmlfind system, we see that the test persons show
appreciation for both systems but that xmlfind receives higher scores than Daf-
fodil. It is difficult to pin-point what’s the deciding factor in the system com-
parison, in the questionnaires the ease of use, the speed and stability, and the
quality of the search results are mentioned by test persons.

Over the whole experiment, perhaps the most striking result is that some
expected problems did not surface in the questionnaires. Note that the xmlfind
system retrieves potentially overlapping elements, and that in the result list even
all ascendants of found elements are added. Hence, one might have expected the
so-called overlap problem that plagues XML retrieval metrics [7] to rear its head.
For example, in the Interactive track at INEX 2004 test persons complained
about encountering partly overlapping results scattered through the ranked list
of elements [8, 9]. Clustering found elements from the same article seems to be an
effective way for an interface to deal with the structural dependencies between
retrieved elements.

The general opinion on the XML retrieval systems was unequivocally positive.
Departing from earlier systems that return ranked lists of XML elements, both
the Daffodil/HyREX and xmlfind group the found XML elements per article
(similar to the Fetch & Browse task in the Ad hoc Track). Test persons seem to
conceive the resulting system as an article retrieval engines with some additional
features—yet with great appreciation for the bells and whistles!
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Abstract. Some changes were made in the interface design of this year’s XML 
documents retrieval system according to the outcomes of the Interactive track in 
INEX 2004. One of the major changes was the hierarchical structure of the 
presentation in the search results. The main purpose of our study was to investi-
gate how the hierarchical presentation of interface influences the searchers' be-
havior in XML document retrieval. To achieve this objective we analyzed the 
transaction logs from this year’s experiment and compared the results to those 
of last year’s experiment. The subjects’ comments on the experiment and the 
system were also examined. The Daffodil XML retrieval system was used and 
12 test persons participated in the experiment. SPSS for Windows 12.0 was 
used for statistical analysis. 

1   Introduction 

In the study of 2004 we provided a fundamental data on users’ search behavior when 
they interacted with the structured XML document retrieval system and found some 
issues needed to be investigated in the interface design [7]. Overlapping elements in 
the result list was one of those issues. Although overlapping can be considered as one 
of the benefits of the element retrieval, the overlapping elements in the search results 
can be an obstruction to effective searching by users. Along this line this year’s Inter-
active Track made some changes in interface design for the experimental retrieval 
system. Those changes include: (1) a hierarchically structured presentation of the 
search results was adopted to address the overlapping problem, (2) a search window 
with more advanced query fields, and (3) a small eye symbol for indicating already 
viewed elements.  

The main purpose of our study was to investigate how the hierarchical presenta-
tion of interface influences the searchers' behavior in XML document retrieval. In this 
paper we report on our study focused on how newly designed interface affects the us-
ers’ overall search behavior by comparing the subjects’ search characteristics of 2005 
with those of 2004. In addition we examined the influence of the hierarchically  
structured presentation of the search results through the statistical analysis of the 
transaction logs. 
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The experimental method employed in our experiment is presented in Section 2. 
The subjects’ overall search behavior and their satisfaction with the XML retrieval 
system are shown in Section 3. The results of comparison between the two years and 
the effect of the hierarchically structured presentation of the retrieval results are also 
provided in the same section. Finally, our conclusions are presented in Section 4. 

2   Experiment  

For the experiment we used the Daffodil XML retrieval system which was customized 
for the INEX Interactive Track and conducted the experiment according to the proce-
dure given by the track organizers [6]. The Daffodil has a number of improvements  
 

 

Fig. 1. HyREX Interface for the Ranked List and the Detailed Page (2004) 

 

Fig. 2. Daffodil Interface for the Search Results and the Detailed Page (2005) 
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over last year’s HyREX system, for example, a hierarchically structured presentation 
of the search results, a simpler relevance assessment scale, and various supportive in-
terface functionalities like a small eye symbol for indicating already viewed elements 
and more advanced query form.  

Figure 1 and Figure 2 show an example of the HyREX interface and the Daffordil 
interface, respectively.  

We conducted our experiment using the baseline system, Daffodil, and followed 
the guidelines from the Track organizers. Particularly, a search session of the sub-
ject’s own task was newly introduced in this year. See Larsen, Malik, Tombros [8] for 
more details. 

For this year’s experiment 12 test persons were volunteered from Kyungpook 
National University. 

3   Results 

Transaction log files from 36 search sessions were analyzed for the subjects’ search 
characteristics and then compared with the results of last year’s experiment. 
Responses from 96 questionnaires were also analyzed to find out the subjects’ satis-
faction with the experimental retrieval system and its interface. SPSS for Windows 
12.0 was used for the statistical analysis. Chi-square test and t-test were mainly 
adopted to identify the significant differences between last year’s results and this 
year’s results. 

3.1   Subjects’ Demographic Information 

All of the subjects answered ‘Korean’ as their first language. The average age was 
26.8 years old at that time of the experiment which was almost the same as last 
year’s (i.e., 27.1). It was reported that our subjects have an average of 7.3 years of 
on-line searching experiences which was also similar to last year’s (i.e., 7.1). The 
various experiences with searching of each year’s subjects are shown in Table 1. 
With  the results of t-test we can interpret whether statistically significant differences 
are exist. 

Table 1. Searching Experiences of the Subjects (Year)1 

2004 2005 t-test for Equality of Means 
Searching experience 

M (SD) M (SD) t, p, Mean Difference2 
Computerized library catalogues 3.25 (1.28) 3.42 (0.90) t=-.34, p=.74, MD=-.17 
Digital libraries of scientific articles 3.00 (0.93) 2.83 (1.03) t=.37, p=.72, MD=.17 
WWW search engines 4.63 (0.52) 4.33 (0.65) t=1.06, p=.30, MD=.30 
IEEE journals and magazines 2.00 (1.07) 1.92 (0.90) t=.19, p=.85, MD=.08 
1 Based upon a 5 points scale where ‘1= No,’ ‘3= Somewhat,’ ‘5= A great deal of experience.’ 
2 Mean Difference= 2004-2005. 



 Users Interaction with the Hierarchically Structured Presentation 425 

As demonstrated in above table, there were no significant differences between 
2004 and 2005 for the subjects’ searching experiences. The subjects’ familiarity with 
WWW search engines was the highest whereas they had the least experience with 
IEEE journals and magazines. The average frequency of performing a search on any 
kind of system were 4.88 (SD: 0.35) in 2004 and 4.25 (SD: 1.06) in 2005 based on a 5 
points scale where ‘1= Never,’ ‘3= Once or twice a month,’ and ‘5= One or more 
times a day.’ There was no significant difference between these two years (t=1.9, 
p=.08, MD=.63).  

3.2   Subjects’ Overall Search Behavior 

The same as last year we regarded that the subjects are engaged in the three activities 
(i.e., querying, browsing, and evaluating) during their searching process. Therefore, 
all of these three activities were taken into account when investigating the subjects’ 
search behavior toward the XML element retrieval.  

In order to look into the subjects’ behavior in querying, browsing, and evaluating, 
the transaction log files of 36 search sessions were analyzed. Among them we ex-
tracted the seven factors which we thought these are closely related with the subjects’ 
behavior in querying and browsing activities.  

The seven factors are as follows: (1) the total number of the queries issued 
by the subject per each search session (Query iterations), (2) the total number of the 
query terms used per each session (Query terms used), (3) the number of the unique 
query terms used per each session (Unique query terms), (4) the number of 
the unique query terms derived from the description of the task (Unique query terms  
 

Table 2. Overall Search Characteristics 

2004 
(8 subjects, 16 sessions) 

2005 
(12 subjects, 36 sessions) 

t-test for 
Equality of Means  

Min. Max. Mean SD Min. Max. Mean SD t, p, Mean Difference3 
Query 

iterations 1 8 5.06 2.35 1 20 5.31 4.03 
t=-.22, p=.82,  

MD=-.25 
Query terms 

used 3 33 15.88 9.98 1 67 12.39 12.17
t=1.00, p=.32,  

MD=3.49 
Uniq. query 

terms 3 18 7.81 3.83 1 18 5.06 3.86 
t=2.38, p=.02,  

MD=2.75 
Uniq. query 
terms in task 3 17 7.44 3.46 1 12 4.00 2.88 

t=3.73, p=.00,  
MD=3.44 

Doc./elem. 
viewed 2 56 17.06 12.16 3 39 14.33 8.27 

t=.95, p=.35,  
MD=2.73 

Doc./elem. 
assessed 1 20 7.06 5.00 1 25 6.22 4.84 

t=.57, p=.57,  
MD=.84 

Time spent 
(mm:ss) 07:10 32:23 23:15 07:07 04:35 29:44 16:40 06:17

t=3.34, p=.00,  
MD=06:35 

3 Mean Difference= 2004-2005. 
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in task), (5) the number of the documents/elements viewed (Documents/elements 
viewed), (6) the number of the documents/elements assessed (Documents/elements 
assessed), and (7) the time spent for each search session (Time spent).  

Table 2 shows the overall search characteristics with these seven factors. For sim-
ple comparison with the results of 2004, the descriptive statistics including the mean 
values are presented.  

We analyzed the mean value for each factor to compare the results of this year’s 
experiment with those of last year’s and examined the significant differences of each 
mean value using the t-test. 

The subjects’ activities seemed decreased a little in this year than last year. For 
example, the query terms used, the numbers of the documents/elements viewed and 
assessed, and the time spent per each search session showed lower than previous 
year’s. However, only the number of the query iterations per each session was a little 
higher than last year’s. There are significant differences in the unique query terms 
used, the unique query terms in task, and the time spent between 2004 and 2005 in 
p<0.05. 

Some additional analysis was done for the subjects’ browsing behavior of each 
year’s experiment and Table 3 and 4 show the results. As shown in the tables, most of 
the subjects accessed and viewed documents/elements using ‘Table of Contents 
(ToC)’ (2004: 43.6%, 2005: 62.2%) or ‘Result list (or Ranked list)’ (2004: 54.9%, 
2005: 37.2%). But only a few of them used ‘Next or Previous buttons (Next/Prev.)’ 
(2004: 1.5%, 2005: 0.6%). Also ‘ToC’ (62.2%) was recognized as the most frequently 
used access mode in this year’s experiment.  

Table 3. Viewed and Assessed Documents/Elements from Each Access Mode (2004) 

  Ranked list ToC Next/Prev. Total 

Document 
59

(21.6%)
0

(0%)
0

(0%)
59 

(21.6%) 

Section 
59

(21.6%)
95

(34.8%)
2

(0.7%)
156 

(57.1%) 

Subsection 
32

(11.7%)
24

(8.8%)
2

(0.7%)
58 

(21.2%) 

Documents/ 
Elements 
Viewed 

Total 
150

(54.9%)
119

(43.6%)
4

(1.5%)
273 

(100%) 

Document 
30

(26.5%)
0

(0%)
0

(0%)
30 

(26.5%) 

Section 
26

(23.0%)
35

(31.0%)
0

(0%)
61 

(53.9%) 

Subsection 
13

(11.5%)
9

(7.9%)
0

(0%)
22 

(19.5%) 

Documents/ 
Elements  
Assessed 

Total 
69

(61.1%)
44

(38.9%)
0

(0%)
113 

(100%) 
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Table 4. Viewed and Assessed Documents/Elements from Each Access Mode (2005) 

  Result list ToC Next/Prev. Total 

Document 
138

(26.7%)
32

(6.2%)
1

(0.2%)
171 

(33.1%) 

Section 
22

(4.3%)
165

(32%)
1

(0.2%)
188 

(36.5%) 

Subsection 
32

(6.2%)
107

(20.7%)
0

(0%)
139 

(26.9%) 

Front matter 
0

(0%)
17

(3.3%)
1

(0.2%)
18 

(3.5%) 

Documents/ 
Elements 
Viewed 

Total 
192

(37.2%)
321

(62.2%)
3

(0.6%)
516 

(100%) 

Document 
36

(16.1%)
11

(4.9%)
1

(0.4%)
48 

(21.4%) 

Section 
15

(6.7%)
82

(36.6%)
0

(0%)
97 

(43.3%) 

Subsection 
20

(8.9%)
52

(23.2%)
0

(0%)
72 

(32.1%) 

Front matter 
0

(0%)
7

(3.2%)
0

(0%)
7 

(3.2%) 

Documents/ 
Elements  
Assessed 

Total 
71

(31.7%)
152

(67.9%)
1

(0.4%)
224 

(100%) 

It is interesting to observe that the total viewed proportion through ‘ToC’ 
increased in 18.6% points whereas ‘Result list’ decreased in 17.7% points in this 
year. There seemed not much deviation in this year’s results of the way of the 
documents/element viewed among ‘Document’ (33.1%), ‘Section’ (36.5%), and 
‘Subsection’ (26.9%) compared to last year results which were ‘Document’ (21.6%), 
‘Section’ (57.1%), and ‘Subsection’ (21.2%). The proportion of access to ‘Docu-
ment’ using ‘Result list’ was 26.7% which means 5.1% points increase than last 
year’s. But the proportion of access to ‘Section’ (4.3%) and that of ‘Subsection’ 
(6.2%) from ‘Result list’ were decreased by 17.3% points and 5.5% points, 
respectively.  

As shown in Table 4, ‘Section’ (43.3%) was found as the most popular way of ac-
cess and followed by ‘Subsection’ (32.1%) and ‘Document’ (21.4%) in this year’s 
experiment.  

We also examined the score of the relevance assessment for each docu-
ments/elements and it ranked as follows: ‘Section’ (1.320), ‘Subsection’ (1.292) and 
‘Document’ (1.188)4. The ‘Section’ is not only the most viewed and assessed element 
but also the highest scored element for the relevance assessment. However, a direct 
comparison between two years’ seems not possible since the 2 dimensions of rele-
vance assessment were adopted in 2004.  

                                                           
4 Based on a 3 points scale in which ‘0= Not relevant’, ‘1= Partially relevant,’ ‘2= Relevant.’ 
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3.2   Interaction with Hierarchically Structured Presentation 

We investigated how a specific change of interface design, especially in a presentation 
of the search results, can affect the searcher’s browsing behavior. To achieve this ob-
jective, we analyzed the transaction logs from the two different experiments: (1) one 
(2004) provides a search results in an unstructured ranked list and (2) the other (2005) 
provides a hierarchically structured list. The results are presented inTable 5.  

Table 5. Firstly Viewed Documents/Elements after Each Query Issuing 

 
2004 

(Unstructured) 
2005 

(Structured) Total 

Document 
27

(43.5%)
60

(74.1%)
87 

(60.8%) 

Section 
21

(33.9%)
7

(8.6%)
28 

(19.6%) 

Subsection 
14

(22.6%)
14

(17.3%)
28 

(19.6%) 

Result list 
(Ranked list)

Total 
62

(100%)
81

(100%)
143 

(100%) 

We used the number of firstly viewed documents/elements after each query issu-
ing as the measure and conducted Chi-square to test the results is statistically differ-
ent. The results indicated that there is a significant difference between two years’ re-
sults (Pearson 2=17.298, p<0.001). It found that the subjects firstly viewed 
‘Document’ after issuing queries in the experiment of 2005, although ‘Section’ was 
the most frequently viewed and assessed element. In contrast, the results from the ex-
periment of 2004 showed a more even distribution over all elements. Overall, based 
on these two results, we could infer that the subjects tend to access ‘Document’ ini-
tially when the search results are presented in hierarchically structured in XML 
document retrieval system. 

3.3   Subjects’ Comments About the Experiment and the System 

After all the search sessions closed the subjects were asked to answer the ‘Post-
experiment questionnaire’ which was intended to take the subjects’ opinions on the 
search tasks (i.e., Q4-2: How understandable were the tasks? and Q4-3: To what ex-
tent did you find the tasks similar to other searching tasks that you typically perform?) 
and the system interface (i.e., Q4-4: How easy was it to learn to use the system?,  
Q4-5: How easy was it to use the system? and Q4-6: How well did you understand 
how to use the system?). 

The results are presented in Table 6. For a quick and easy comparison with last 
year’s results, we analyzed the mean value and the standard deviation of the responses 
to each question. The results from a t-test showed that the subjects’ score for the un-
derstandability of tasks and the similarity to the other tasks were significantly in-
creased over last year’s in p<0.05. 
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Table 6. Selected Questions from the Post-experiment Questionnaire5 

2004 2005 t-test for Equality of Means 
 

M (SD) M (SD) t, p, Mean Difference6 
Q4-2 

(Understandability of tasks) 
3.25 (0.71) 3.50 (0.80) t=-.72, p=.48, MD=-.25 

Q4-3 
(Similarity to other tasks) 2.13 (0.84) 2.91 (0.54) t=-2.49, p=.02, MD=-.78 

Q4-4 
(Ease of learning to use the system) 3.75 (0.71) 3.42 (1.00) t=.82, p=.43, MD=.33 

Q4-5 
(Ease of using the system) 3.88 (0.84) 3.42 (0.90) t=1.15, p=.27, MD=.46 

Q4-6 
(Understandability of using the system) 3.63 (0.92) 3.17 (0.94) t=1.08, p=.29, MD=.46 

5 Based upon a 5 point scale where ‘1= Not at all’, ‘3= Somewhat,’ ‘5= Extremely.’ 
6 Mean Difference= 2004-2005. 

The increase of the similarity to other tasks may be resulted from using ‘Own’ 
category of tasks which newly adopted this year’s experiment. But more detailed 
analysis seems to be needed to identify an accurate relationship between the responses 
of Q4-3 and using ‘Own’ tasks. 

The subjects’ likes and dislikes about the search system and its interface are listed 
in Table 7. 

Table 7. Subjects’ Likes and Dislikes about the Search System and Interface (2005) 

Q4-7 
(Likes about  

the search sys-
tem and inter-

face) 

 ‘ToC’ in the detailed page (6) 
 Related terms list (4) 
 Display of the 'Parts of the document' in the result list (3) 
 Keyword highlighting (2) 
 Simple interface of the search window (1) 
 Indication of already viewed ones in the detailed page (1) 
 Ranked list (1) 
 Direct links to each relevant element in the result list (1) 

Q4-8 
(Dislikes about 
the search sys-
tem and inter-

face) 

 Limited search functions (e.g., 'phrase search', 'search within the results', 
'Boolean operators', 'search term weighting') (5) 
 No indication for the already viewed or assessed documents/elements in 
the result list (Inconsistency of representing the viewed ones between the 
result list and the detailed page) (4) 
 Too slow of the response time (4) 
 Broken images and numerical formulas (4) 
 Limited usefulness of 'Related terms list' (2) 
 Too many windows (1) 

(N): Number of subjects 

Subjects were pleased with the table of contents (‘ToC’) and the newly adopted 
‘Related terms list’ in the detailed page as well as the structured presentation of the 
search results. Some problems such as overlapping elements or limited information in 
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the result list that arose in last year’s experiment were not reported from this year. 
However, many subjects pointed out the following issues: the insufficiency and in-
consistency of the indicator for the viewed documents/elements, the broken images 
and formulas in the detailed page, the delay of the response time, and the limited 
search functions.  

4   Conclusions 

Some changes were made to the interface design of 2005 Interactive Track retrieval 
system according to the outcomes of last year’s experiments. The major changes are: 
(1) a hierarchically structured presentation of documents/elements in the result list, 
(2) the adoption of a more advanced search window, and (3) the application of an in-
dication symbol for already viewed elements.  

At the INEX 2005 Interactive Track, we aimed to investigate how the changes of 
the interface design, especially in the presentation of the search results, influenced the 
searchers’ browsing behavior when they are interacting with an XML document re-
trieval system. To achieve this objective, we analyzed the users’ search characteristics 
from the transaction logs and compared these to those of last year’s experiment.  

A Java-based element retrieval system, the Daffodil, was used in the experiment 
and 12 test persons took part in it. The transaction log files from 36 search sessions 
and the responses from 96 questionnaires were collected and analyzed.  

From the analysis we found that (1) the subjects’ overall searching activities 
were decreased a little in this year than last year, (2) the subjects are tend to view 
‘Document’ prior to other elements in a hierarchically structured result list, (3) the 
subjects are tend to access and view the documents/elements through the table of 
contents (ToC)’ (2004: 43.6%, 2005: 62.2%), and (4) the ‘Section’ is not only 
the most viewed and assessed element but also the highest scored element for the 
relevance assessment.  

Future experiments will examine how subject’s demographic variables effect in 
their searching with XML documents. Also it is hoped that more detailed investigations 
will be followed using last two years’ experimental data which we already gathered. 
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Abstract. XCLS is a novel clustering algorithm to assemble heterogeneous 
XML documents by measuring their level similarity with a global criterion 
function. XCLS does not require the pair wise similarity to be computed 
between two individual documents, rather it measures the similarity at 
clustering level utilising the structural information of XML documents. Quality 
of the clustering solution depends on the calculation of the level similarity, and 
whether the level similarity can represent the documents’ structural similarity 
correctly. In this paper, we present the performance of XCLS for clustering the 
structural descriptions (ordered labeled trees) of XML documents. We have 
reported 5 sub-tasks corresponding to 5 corpuses as provided by the INEX 2005 
document mining track. 

1   Introduction 

The widespread adoption of XML as the main standard for both data and meta-data 
representation has led to the massive amounts of collection of XML documents. 
Several database tools have been developed to deliver, store, integrate and query the 
XML data [2, 4, 10]. However they do require efficient data management techniques 
such as indexing based on the structural similarity to support an effective document 
storage and retrieval. The data mining (DM) techniques such as clustering can 
facilitate these applications [5, 15].  

DM techniques have been around for many years for exploration of interesting 
knowledge from a large amount of (unstructured and text) data. Mining of XML data 
(that is semi-structured and hierarchal) significantly differs from data mining and text 
mining. The XML data mining process is more complex [9] due to the nature of the 
XML data. Firstly, XML allows the embedding of the semantic and structural aspects 
in document contents. This results in XML data capturing the values of individual 
elements as well as the relationships between them. The XML mining algorithms 
should handle these relationships in the process as well along with values. Secondly, 
everyone can design their own XML document with great flexibility and few 
restrictions, in both structure and semantics.  The heterogeneity in XML documents 
presents many challenges to the mining process. 

Several XML data clustering [1, 3, 6, 7] methods have been suggested, but there 
remains some problems. The major problem is scalability. The majority of these 
methods rely on the notion of tree edit distance developed in the combinational pattern 
matching methods [14] to find common structures in tree collections. (A document is 
usually represented as a tree structure.) These methods are built on pair-wise similarity 
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between data.  The pair-wise similarity is measured using the local functions between 
each pair of objects to maximize the intra-cluster similarity and to minimize the inter-
cluster similarity. The similarity value between each pair of trees is mapped into a 
similarity matrix. This matrix becomes the input to the clustering process using either a 
hierarchical agglomerative clustering algorithm or a k-means algorithm [5]. They are 
generally computationally expensive when the data sources are large due to the need 
for pair wise similarity matching among diverse documents.  

Clustering methods, that use global metrics [12, 13] and also consider the hier-
archical structure, can overcome the scalability problem. The clustering criterion 
function (or a global similarity measure) is defined on the cluster level to optimize the 
cluster parameters. Each new object is compared against the existing clusters instead 
of comparing against the individual objects. Since the computations of these global 
metrics are much faster than that of pair-wise, global approaches are very efficient.  

We have developed the XML Clustering with Level Similarity (XCLS) algorithm 
using a global similarity measure [8]. This algorithm is shown to be very time 
efficient. We participated in INEX 2005 document mining track for clustering the 
given INEX 2005 XML corpus data with XCLS. We first present the algorithm 
detailing its working. We then present the experimental analysis of XCLS on 5 sub-
tasks corresponding to 5 corpuses as provided by the first document mining track. 

2   XML Documents Clustering with LevelSim (XCLS)  

The XCLS method (as shown in figure 1) first represents the XML documents in the 
Level structure format. Progressively, the clustering process groups two objects 
(document to cluster or cluster to cluster) according to the LevelSim measures. This 
global criterion function measures similarity at the clustering level considering the 
hierarchical structures of the XML documents. It compares the new document to the 
existing clusters, thus ignoring the need to compute the similarity between each pair 
of documents.  

 

Fig. 1. A high-level view of the XCLS method 

2.1   Level Structure: Inferring of XML Documents Structure  

To be applicable to general Web documents and any type of XML documents (well-
formed, valid and ill-formed) the XCLS algorithms starts by inferring the structural 
information within the document that is represented as the ordered labelled tree.  
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When inferring the structure, the focus is on the paths of elements with content 
values (i.e. leaves in a document tree), without considering attributes in a XML 
document. The inferred structure preserves the hierarchy and the context of the 
document. The multiple instances of values are ignored for an element. As this is 
redundant information for the presentation of a structure and, moreover, the 
occurrence of elements is not important for clustering in most cases. Additionally, 
XCLS does not consider the order of sibling when computing the similarity, as the 
order of sibling is not important for the clustering.  

Figures 2 shows a XML document (X_Movie) and its corresponding structural tree 
(T_Movie). In order to enhance the clustering speed, the name of each element is 
denoted by a distinct integer.  

 

Fig. 2. An XML Document (X_Movie) & its tree representation (T_Movie) 

                      

Fig. 3. Level structure for T_Movie  Fig. 4. Level structure of a cluster  

XCLS uses the concept of the level structure to show the levels and the elements 
in each level of a tree structure. The Figure 3 shows the level structure for T_Movie. 
The level structure contains the information such as element values and their 

<?xml version=”1.0” encoding=”UTF-8”?> 
<Movie Database>                        
     <Movie> 
            <Title> Gold Rush </Title>  
            <Year> 1925 </Year> 
            <Directed by> 
 <Director> Charles Chaplin </Director> 
            </Directed by> 
            <Genres>    
  <Genre> Comedy </Genre> 
  <Genre> (more) </Genre> 
            </Genres> 
            <Cast>  
  <Actor> 
      <FirstName> Charles </FirstName> 
       <LastName> Chaplin </LastName> 
   </Actor> 
   <Actor> (more) </Actor> 
            </Cast> 
    </Movie> 
    <Movie> (more) </Movie> 
</Movie Database> 
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occurrences and the levels in the hierarchy. Clusters are also represented as the level 
structure. Each level of a cluster contains a collection of elements of the same level 
for all documents within the cluster. The figure 5 shows a tree structure of a document 
on Actor information and its corresponding level structure. The Figure 4 shows the 
level structure of a cluster containing both the Movie and Actor documents.  

 

Fig. 5. T_Actor and its level structure 

2.2   Clustering Global Criterion Function with Level Similarity (LevelSim) 

The global criterion function called Level Similarity (LevelSim) measures the struc-
tural similarity between two XML objects (tree to cluster) by considering the level 
information and the elements’ relationships/context of the XML data. The LevelSim 
emphasizes a different importance of elements in different level positions by 
allocating different weights to them. The higher level (e.g. root) has more weight than 
lower level (e.g. leaf). This is due to the assumption that the documents with different 
root nodes have higher chance of being assigned in different clusters. The hierarchical 
relationships of elements are also considered by counting occurrences of common 
elements sharing common ancestors.  
   The criterion function LevelSim is defined as follows for matching two objects, a 
tree and a cluster. Let us say that the tree is the object 1 and the cluster is the object 2. 
The order of matching between two objects is important due to the structural 
information present in an XML document. A cluster can contain only one tree as well.  
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Where: 

1ComWeight  Total weight of the common elements in all levels considering the 
level information of the object 1. 

2ComWeight  Total weight of the common elements in all levels considering the 
level information of the object 2. 

TreeWeight Total weight of all items in each level of the tree (i.e. the object 1). 
 

Z Size of the cluster in terms of the number of trees within the cluster. 
iCN1
 Sum of the occurrences of every common element in the level i of the 

object 1. 
jCN 2
 Sum of the occurrences of every common element in the level j of the 

object 2. 
kN  Number of elements in level k of the tree 

r Base Weight: the increasing factor of weight. This is usually larger 
than 1 to indicate that the higher level elements have more importance 
than the lower level elements. 

L Number of levels in the tree. 
 

LevelSim yields the values between 0 and 1; where 0 indicates completely different 
objects and 1 indicates homogenous objects.  

2.3   The Process of Structure Matching Between Two Objects  

The steps to match the elements of a tree (object 1) to the elements of a cluster 
(object 2) are as follows:  

1. Start with searching common elements in the 1st level of both objects. If at least 
one common element is found, mark the number of common elements with the 
level number in object 1 ( 0

1N ) and the number of common elements with the level 

number in object 2 ( 0
2N ), then go to step 2. Otherwise, go to step 3. 

2. Move both objects to next level (level i++, level j++) and search common elements 
in these new levels; If at least one common element is found, mark the number of 
common elements with the level number in object 1 ( iN1

) and the number of 

common elements with the level number in object 2 ( jN 2
), then go to step 2. 

Otherwise, go to step 3. 
3. Only move object 2 to next level (level j), then search common elements in the 

original level (i) of object 1 and the new level (j) of object 2.  If at least one 
common element is found, mark the number of common elements with the level 
number in object 1 ( iN1

) and the number of common elements with the level 

number in object 2 ( jN 2
), then go to step 2. Otherwise, go to step 3.   

4. Repeat the process until all levels in either object have been matched.  

After completion of structure matching the Level Similarity (LevelSim) is 
computed.  
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Figure 6 shows two different cases of the matching object 1 to object 2. In the first 
case, object 1 is the T_Movie tree (as shown in figure 5) and the object 2 is the cluster 
only containing the T_Actor tree (as shown in figure 4). In the second case, object 1 is 
the same, but the object 2 is the cluster containing both T_Actor and T_Movie (as 
shown in figure 3). 
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Fig. 6. Two different cases showing the process of matching a tree to a cluster  

We have mentioned earlier that the order of matching between two objects is 
important. This is due to another reason that the operation LevelSim is not transitive. 
As a result, the level similarity between two objects is computed, 

21→LevelSim and 

12→LevelSim , and the larger value between these two is chosen:  

12211221 :? →→→→ >= LevelSimLevelSimLevelSimLevelSimLevelSim  .      

 2.4   Clustering with Level Similarity 

The next task is to group each XML document within the XML sources into a new 
cluster or to an existing cluster that have the maximum level similarity (LevelSim) 
with the given document. The figure 7 outlines the algorithm that includes two phases 
of allocation and reassignment. In the allocation phase, clusters are progressively 
formed driven by LevelSim. In the reassignment phase, as the name suggests, the 
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derived clustering solution is refined by optimizing the LevelSim between the new 
document and existing clusters. The XCLS algorithm uses a user-defined threshold 
LevelSim_Threshold below that the cohesion between two objects is not considered 
i.e., LevelSim < LevelSim_Threshold.  

/*Phase 1 – Allocation*/ 
For all XML trees to be clustered 

• read the next tree (represented as level structure); 
• compute the LevelSim between the tree and each existing cluster; 
• assign the tree to an existing cluster if maximum of LevelSim(s) is found 

between two objects and  LevelSim > LevelSim_Threshold; 
• otherwise, form a new cluster containing the tree. 

 
/*Phase 2 – Reassignment (adjustment) */ 
For all XML trees       

• read the next tree (i.e. level structure); 
• compute the LevelSim between the tree and each existing cluster; 
• reassign the tree to an existing cluster if maximum of LevelSim(s) is found 

between two objects and  LevelSim > LevelSim_Threshold; 
• otherwise, form a new cluster containing the tree. 

 
/*Stop if there is no improvement in two iterations*/ 

Fig. 7. The XCLS core clustering algorithm 

3   Experimental Evaluation 

Dataset: The data used in experiments are the MovieDB and INEX corpuses 
provided by the INEX 2005 document mining track.  The MovieDB corpus has 11 
thematic and 11 possible structure classes. The MovieDB collection is derived into 
many versions (m-db-s-0, m-db-s-1, m-db-s-2 and m-db-s-3) after a series of 
transformation to add the complexity in clustering process. The INEX corpus has 6 
thematic (Computer, Graphics, Hardware, Artificial Intelligence, Internet, Parallel) 
and 2 structural classes (Transaction journals vs Others). Some documents could not 
be parsed and therefore are not valid documents. These documents are excluded 
during the clustering process. The table 1 shows some characteristics of the data set.  

Table 1. Features of the data sets 

Dataset Bad trees 
(ill-formed) 

Trees to be 
Clustered 

Distinct 
Labels 

m-db-s-0-test 5 4811 195 

m-db-s-1-test 4 4814 197 

m-db-s-2-test 9 4809 197 

m-db-s-3-test 9 4809 194 

inex-s-test 0 6053 173 
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Evaluation Criteria: XCLS was evaluated on the given data set with the criteria of 
purity (micro and macro), entropy (micro and macro) and mutual information. These 
criteria were set by the INEX 2005 document mining track.  
Experimental set-up: All the experiments were done on the machine with 2.8GHZ 
Intel Celeron CPU and 1G of RAM.  We submitted two runs for each data set to the 
INEX 2005 document mining track. The first run (denoted as run 1) has the parameter 
for maximum number of clusters set as 1000. It means that XCLS automatically 
groups the documents into clusters without a prior knowledge. The second 
experimental run (denoted as run 2) has the parameter for maximum number of 
clusters set as the required (known) clusters. It means XCLS is guided about when to 
stop, overriding its natural stopping methods.  
Results: Table 2 reports the performance of XCLS on these data sets for the purity, 
entropy and mutual information measurements. It is interesting to see that XCLS 
performed similarly in the entire movie corpuses, even though, the transformations 
on the MovieDB collection have been defined so that each series should be more 
difficult to cluster than the preceding. E.g., the second MovieDB data set classes 
have a higher overlap than for the first one to make the clustering more difficult. 
This shows the strength of the clustering criteria and the approach that XCLS adapts 
for clustering. 

XCLS by its nature does not need to inform about the required number of clusters. 
In other words, the information of number of clusters does not help the clustering 
process at all. The results in the tables 2 confirm this. There is no significant 
difference in quality of the clustering solution in both runs.  In the run 1 type 
experiments where information on the set number of clusters is not provided, the 
number of clusters are usually large (>100) depending on the similarity threshold in 
the allocation phase of the clustering algorithm. However, in the following iterations, 
the number of clusters decreases automatically due to the clustering controlled by the 
level similarity between the tree and the original cluster or other clusters, rather than 
the set level threshold.  We conclude from this that the XCLS performs independent 
of the prior information about the number of clusters.  

XCLS does better in several movie corpuses in comparison to the INEX corpus 
(Table 2). The INEX result shows the extreme high entropy indicating that the 
various classes of documents are incorrectly distributed within clusters. However, 
the relatively higher purity in the INEX results shows that each cluster contains 
documents primarily from its corresponding class. The contingency matrix shows 
that XCLS has clustered majority of documents in cluster 1 (6044 out of 6053), 
however, XCLS has been successful in allocating relevant classes to cluster 1 
(3933/3937).  

The contingency matrix for all the data sets shows that XCLS can group most 
documents belonging to the same class into one cluster; it seldom puts them into 
separate clusters. However, it sometimes groups documents from several classes into 
one cluster because of their higher level similarity.   

There may be considered many reasons behind this. Firstly, this version of XCLS 
does not take many semantic similarities such as synonyms, hyponyms, hypernyms 
between two terms (or tags) into account when converting a tag name into unique  
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Table 2. The XCLS performance for various measurements 

Dataset Run Micro-
purity 

Macro-
purity 

Micro-
entropy

Macro- 
entropy 

Mutual 
Information 

m-db-s-0-test 1 0.604 0.794 0.325 0.171 1.53 

 2 0.589 0.786 0.334 0.174 1.51 

m-db-s-1-test 1 0.603 0.682 0.331 0.268 1.51 

 2 0.596 0.769 0.335 0.203 1.51 

m-db-s-2-test 1 0.590 0.720 0.335 0.249 1.51 

 2 0.592 0.728 0.335 0.241 1.51 

m-db-s-3-test 1 0.592 0.756 0.340 0.197 1.49 

 2 0.589 0.707 0.340 0.224 1.49 

inex-s-test 1 0.651 0.603 0.934 0.962 0.0 

 2 0.651 0.603 0.934 0.962 0.0 

integer for better processing. Secondly, due to the nature of XCLS, documents are not 
compared against each other, but, each document is compared against the existing 
clusters. Additionally, XCLS does not only consider the parent-child relationship to 
measure the structural similarity, but also include the ancestor relationships of the 
data. This makes it more appropriate for clustering the heterogeneous data. Therefore, 
the full extent of XCLS has not been tested and reflected in the homogenous 
environment data such as the INEX corpus.  

There are also many issues that might have negative effects on the clustering result 
of XCLS. The dataset given in this challenge is a set of ordered trees. However, 
XCLS assumes that the order of siblings is not important for clustering. It does not 
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Fig. 8. The preprocessing time of XCLS on m-db-s-0 
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Fig. 9. The clustering time of XCLS on m-db-s-0 

consider the order of sibling when computing the similarity. Additionally, XCLS can 
not efficiently handle the overlapped similar structures due to its level structure 
representation of cluster structures in which it stores only the elements, their levels 
and occurrences. It does not store the information about the trees in which they come 
from for efficiency purpose. Therefore, if trees have complex overlapped structures, 
the calculation of level similarity between a tree and a cluster is not accurate. E.g., if 
Tree1 has structures ABC, Tree2 has structures ACD, Tree3 has structures ABCD, in 
most cases they will be group together by XCLS.  

Figure 8 shows the pre-processing time performance of XCLS on m-db-s-0 that 
includes the generation of level structure for all documents. Figure 9 shows the 
clustering time performance that includes the time to group the represented level 
structures in clusters using LevelSim. These figures show that the time cost of XCLS 
is linear to the number of documents. 

4   Conclusions and Future Work 

We apply the XCLS algorithm based on the intuitive idea of the LevelSim global 
criterion function to effectively cluster the movie and INEX data by their structures. 
XCLS measures the structural similarity in clustering level instead of the document 
level, thus it does not need to calculate the pair-to-pair distance between each pair of 
documents. The derivation of level structure from a tree is straightforward; and the 
computation of LevelSim is quite effective for documents with varied structures. 

The results show that XCLS can cluster a large number of documents belonging to 
different domains and having a large number of distinct labels. It does it so with the 
time complexity linear to the number of documents, and without knowing the 
information on the number of clusters. Although there remains some inaccuracy in 
solution, but, the main purpose of XCLS is the time effectiveness to cluster the 
massive amount of documents in heterogeneous environment with good accuracy.  
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XCLS needs some future work to improve its effectiveness. XCLS ignored the 
semantic similarity among tags, which is impractical in the flexible environment on 
web since people may use different tags to describe the same thing. As WordNet can 
organize English words into synonym sets and defined different relations link the 
synonym sets, it can be added to the pre-processing phase to recognize the semantic 
similarity among elements.  
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Abstract. This paper reports on the INRIA group’s approach to XML
mining while participating in the INEX XML Mining track 2005. We
use a flexible representation of XML documents that allows taking into
account the structure only or both the structure and content. Our ap-
proach consists of representing XML documents by a set of their sub-
paths, defined according to some criteria (length, root beginning, leaf
ending). By considering those sub-paths as words, we can use standard
methods for vocabulary reduction, and simple clustering methods such as
k-means. We use an implementation of the clustering algorithm known
as dynamic clouds that can work with distinct groups of independent
modalities put in separate variables. This is useful in our model since
embedded sub-paths are not independent: we split potentially depen-
dant paths into separate variables, resulting in each of them containing
independant paths. Experiments with the INEX collections show good
results for the structure-only collections, but our approach could not
scale well for large structure-and-content collections.

1 Introduction

XML documents are becoming ubiquitous because of their rich and flexible for-
mat that can be used for a variety of applications. Standard methods have been
used to classify XML documents, reducing them to their textual parts [10]. These
approaches do not take advantage of the structure of XML documents that also
carries important information.

Recently much attention has been drawn towards using the structure of XML
documents to improve information retrieval, classification and clustering, and
more generally information mining [4, 5, 7, 13, 22]. In the last four years, the
INEX (Initiative for the Evaluation of XML retrieval) has focused on system
performance in retrieving elements of documents rather than full documents and
evaluated the benefits for end users. Other researches have focussed on clustering
large collections of documents using representations of documents that involve
both the structure and the content of documents, or the structure only [8, 24, 26].
One motivation for structured-based clustering is to organise XML collections
into smaller collections with a specific schema that supports optimisation of the
query processing.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 443–457, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Approaches for combining structure and text range from adding a flat repre-
sentation of the structure to the classical vector space model [10] or combining
different classifiers for different tags or media [9], to defining a more complex
structured vector models [25], possibly involving attributes and links [15].

When using the structure only, the objective is generally to organize large
and heterogeneous collections of documents into smaller collections (clusters)
that can be stored and searched more effectively. Part of the objective is to
identify substructures that characterize the documents in a cluster and to build
a representative of the cluster [11], possibly a schema or a DTD.

Since XML documents are represented as trees, the problem of clustering
XML documents can be seen as the same as clustering trees. One can identify
two main approaches: 1) identify frequent common sub-patterns between trees
and group together documents that share the same patterns [22, 27, 11]; 2) define
a similarity measure between trees that can be used with a standard clustering
algorithm. A possible distance is calculated by associating a cost function to the
edit distance between two trees [12, 20, 5]. However, it is well known that edit
distance algorithms have complexity issues. Therefore some models replace the
original trees by structural summaries [6] or s-graphs [17] that retain only the
intrinsic structure of the tree: for example, reducing a list of elements to a single
element, flattening recursive structures, etc.

A common drawback of the two approaches above is that they reduce docu-
ments to their intrinsic patterns (sub-patterns, or summaries) and do not take
into account an important characteristic of XML documents: the notion of list of
elements and more precisely the number of elements in those lists. While it may
be fine for clustering heterogeneous collection, suppressing lists of elements may
result in losing document properties that could be interesting for other types of
XML mining.

Our idea is therefore to use a document representation that takes into account
the frequency of structure within the documents, while not be as costly as the
edit distance.

In this paper we propose a generic model for clustering documents that in-
volves either their structure or both their structure and content. We represent
documents by flattening their trees into their sets of sub-paths of length be-
tween n and m, two a priori given values. We retain the frequency of paths
and we consider sub-paths as words. Therefore we can apply standard clustering
methods usually used for text. When considering document content as well as
structure, sub-paths are extended with the individual words of the text contained
in the terminal node of each path. For specific values of m and n, our model is
equivalent to models that have been proposed before, so we offer a more general
framework.

We evaluate our model using the collections proposed in the INEX XML
mining track, while being aware that our approach may not be appropriate for
some of the proposed collections, in particular those where the order of elements
is significant for clustering.
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In Sect. 2, we present our document model for clustering and compare it,
in Sect. 3, to previous models for specific values of m and n. Sect. 4 describes
our clustering method and some additional feature selection. Sect. 5 details the
evaluation metrics we use, while Sect. 6 and 7 present our experiments and the
results. In Sect. 8 we propose our conclusions.

2 Our Model for Document Representation

XML documents are usually represented as trees where each node corresponds
to an XML tag. The hierarchy of the nodes reflects the embedding of the tags,
and leaf nodes have associated text. Attributes can be represented the same way
as sub-elements, i.e. as additional descendants of the node they are attached to.

Fig. 1. An example of XML document

Fig. 1 gives an example of an XML document, extracted from the IEEE
collection, that we will use throughout the paper.

Our model is based on a tree linearization that represents a document as
its set of paths. The precise definition of paths to consider is defined below and
correspond, in fact, to a family of possible representations that take into account
the structure, the text, or both. By regarding paths as simple words we can use
the vector model to represent documents from their structure.

The motivation for a flexible choice of paths or sub-paths in the document is
that some analysis or clustering tasks may be interested in the top part of the
tree, the lower parts of the tree, or possibly parts in the middle. An example
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would be clustering very heterogeneous collections based on the structure, where
the partition can be done by looking at the top level elements only. On the
contrary, if one wants to cluster documents based mostly on the text, it could
be appropriate to add some limited context just above the text.

Before presenting our structured document representations, we introduce some
definitions:

Definition 1. The path of a node n is the sequence of nodes from the root to
this node, when traversing the tree from child to child. We note it p(n). It is also
called a root-beginning path1, or root path for short.

Definition 2. The length of a path is the number of nodes in the path.

Definition 3. A sub-path s of length l on a path p is a sequence of l consecutive
nodes along the path p. (i.e. a sub-path does not necessarily start at the root).
We note |s| the length of the sub-path s.

Table 1 shows examples of paths and sub-paths of length 3.
To take into account the text of the documents, we introduce “text paths”

defined as follow:

Definition 4. A text sub-path is a sub-path that ends with a word contained in
the text associated with the last node in the sub-path. When the last node is not
a leaf, the words are those associated with its descendants.

Table 1. Paths and sub-paths of length 3;
the character @ marks an attribute

Paths Tf
article.bdy.sec 1
article.fm.au 1
bdy.sec.p 2
bdy.bb.au 2
bdy.sec.sno@ 1

Table 2. Textual paths of length 4
and 3

Paths Tf
article.fm.abs.“offer” 1
bdy.sec.p.“historian” 1
bdy.sec.sno@.“01” 1
article.fm.au.“werner” 1
bdy.sec.“historian” 1

Table 2 shows some text paths or sub-paths of length 4 and 3 corresponding to
the example in Fig. 1. The last two paths are non terminal paths extended with
words that are not directly associated with their final node but with one of their
descendants.

We can now define a family of representations for a XML document tree d as:

R(d) =
∑

i

wipi (1)

for all sub-paths pi in d, where m ≤ |pi| ≤ n, 1 ≤ m ≤ n , wi is the frequency of
sub-paths pi.
1 We use the terminology used in Liu and al. [18] for complete paths, root-beginning

paths, leaf-ending paths.
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The actual representations are defined by a few parameters:

– m and n are two a priori fixed integers. The value “n” can be replaced
with the symbol “*”, meaning that, for each sub-path, the maximum value
would be the length of its supporting path.

– when the parameter root is set on, only the sub-paths starting from the
root (root-beginning paths) are generated.

– when the parameter leaf is set on, only the sub-paths ending at leaf nodes
(leaf-ending path) are generated.

– with the parameter text set on, only “text paths” are generated.
– with the parameter text-and-node set on, both text sub-paths and node

sub-paths are generated.
– with the parameter attribute set on, attributes, as well as nodes, are con-

sidered for path generation.

By setting different parameter values, we can use a variety of document represen-
tations for different clustering tasks. Before presenting our clustering approach,
we are going to interpret the models for some specific values of the parameters,
and compare them with other existing models.

3 Comparison with Other Models for Structured
Documents

Our document model integrates various representations that have been proposed
in other works:

– Case min = 1, max = 1, text = true;
This case corresponds to representing a document by its text only (standard
vector model)

– Case min = 1, max = 1, text = false, [attribute = (false|true)];
Corresponds to representing a document by the list of its tags. This is the
model used, with or without attributes, in Doucet and al. [10], for the case
“Tag feature only”, based on the vector model. It is also used in Flesca and
al. [11] where both elements and attribute names are considered. Moreover
if node-and-text is set to true, we get the “Tag and text features” used in
Doucet and al. [10].

– Case min = 1, max = ∗, root = true, leaf = true, [text = (false|true)];
In this case XML documents are represented by the set of their paths from
the root to the leaves. In Yoon and al. [26] they use a bitmap matrix where
lines represent the documents and columns represent the different terminal
paths in the collection. The frequency is not used. They also extend their
bitmap model by adding quadruplets (document, path, term, b) where b is
true if the path contains the term, which corresponds in our case with text
set to true. When text = true, it is also the representation used in Yi and
Sundaresan [25] for the “flat with structured tag” experiments, where each
term (document word) is replaced by its text path in a flat vector.
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– Case min = 1, max = ∗, root = true, leaf = false, text = true;
A document is represented by the set of all the root text paths (of any length)
in the document, where a term will belong to its parent node and all the
embedding nodes. This model is equivalent to the Structure Vector Model
proposed in Yi and Sundaresan [25], where a document is represented by all
its paths of length between 1 and the height h of the document tree. The
frequency of terms associated with a path is relative to the subtree associated
with that path.

– Case min = 1, max = L, root = false, leaf = false, text = false;
One of the representation proposed in Liu and al. [18] is based on paths of
length smaller than L, although they can also fix the level in the tree where
the paths must start. In our case paths will start at the root or at any level
in the tree.

– Case min = n, max = n, root = false, leaf = true, text = true;
This case corresponds to representing documents by leaf-ending sub-paths
of length n, and therefore providing a limited context to the terms in the
documents. One of the representations developed in Liu and al. [18] in-
cludes the definitions of leaf-ending paths as well root-beginning paths, of
length less than L. They seem to use text as well, but this is not clearly
described.

Our representation of XML documents using sub-paths is therefore flexible
enough to subsume many of the representations used in the above works.

Other representations for XML trees for clustering have recently been pro-
posed. Nayak and Xu [19] represents an XML document by its level structure:
each level is represented by the list of labels (tags) that occur at this level;
multiple instances are ignored and the order of the labels is not preserved. The
clustering algorithm is based on a similarity measure between levels. Candillier
and al. [1] transforms the XML trees into sets of attribute-values in order to
apply various existing methods on such data. Considered attributes include the
set of parent-child relations, the set of next-sibling relations, the set of distinct
root paths, etc. Thoses attributes results in a number of features whose values,
for a given document, are their number of occurences of this feature in the doc-
ument. For clustering or classification, they use an adaptation of SSC [2], a sub-
space clustering algorithm that has the advantage of providing an interpretable
representation of the resulting clusters, as a decision tree on the discriminent
features.

4 Clustering Approach

Since we represent XML documents as a set of paths seen as words, we can use
traditional clustering methods for flat texts. However we have to deal with two
issues: first, reducing the number of paths in case they are too many; secondly,
the possible dependency of paths. Before presenting the clustering approach we
address these two issues.
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4.1 Further Feature Selection

Algorithms for clustering such as the k-means are linearly dependent on the size
of the data, that is, the number of words that represent the documents. In our
case the document will be represented not only by the different words in the
text but possibly by their contextual paths (i.e. generating as many different
occurrences of a word as the different contexts in which it occurs). Moreover
they may be extra “words” corresponding to any sub-path in the document
trees (node paths) 2. It is therefore necessary to limit the number of paths that
represent the documents to reduce the clustering time.

We apply two levels of feature selection in the path generation: structure
level and text level. Then we reduce the number of paths by applying standard
selection on words using their relative frequency (TF/IDF).

Structure level. Usually we reduce the number of generated paths by regroup-
ing some tags in more semantic categories, using our knowledge of the DTD or
the collections. For example we replace tags for different sections (ss1, ss2, sec),
by a single tag “sec”, and ignore presentation tags. Since the INEX collections
were specially preprocessed for the XML mining track, we did not have to take
care of these semantic groupings.

Text level. For the textual content of the document, we use standard reduction
methods:

– stop list word for suppressing insignificant word
– suppression of terms shorter than 4 characters
– pseudo stemming using the Porter stemmer [21].

Frequency of paths. As said before, the documents are represented by a
set of paths that depends on the chosen parameters. First, the frequency of a
path is calculated and normalized using the TF/IDF formula (number of path
occurrences in the document over their number in the whole collection). Paths
that are too frequent or too rare will be suppressed. In particular paths that occur
only once in the collection will be suppressed since it will not affect the clustering
process. Similarly paths that occur in every document will not contribute to
partitioning documents.

For the remaining paths, we calculate their normalised weight in the document
by dividing the number of occurrences of the path by the number of the paths
in the document (standard vector normalization to take into account the length
of the documents).

4.2 Word Dependency

Clustering algorithms based on the vector model rely on the independence of the
various dimensions (words) for calculating the distance between the vectors. Al-
though this is not always verified in practice with words in texts, it usually works
2 Obviously there will be much more leaf-ending paths than root-paths since trees are

expending from the root to the leaves.
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fine. In our case, where words are sub-paths in the document tree, there is an
obvious dependency between embedded sub-paths. For example, the two paths
bdy.sec and bdy.sec.st are not independent since the second can exist only if the
first one exists, the first one being embedded in the second one. However, two
overlapping paths, such as bdy.sec and sec.st would not be regarded as depen-
dent. We only consider structural dependency here, not dependency that would
derive from the DTD itself, for example if two siblings are mandatory according
to the DTD definition. This later dependency would not affect the clustering
results since the two paths would then be present in all the documents and
therefore eliminated as very frequent.

To deal with the first case of dependency, we partition the paths by their
length and treat each set of paths as different variables in the clustering algorithm
as explained below.

4.3 Clustering Method

Our clustering algorithm is based on the partitioning method proposed by Celeux
and al. [3], where the distance between clusters is based on the frequency of
the words of the selected vocabulary. This approach is equivalent to the k-
means algorithm. As for the k-means we represent the clusters by prototypes
which summarize the information (paths) of the documents belonging to each
of them.

More precisely, if the vocabulary counts p words, each document s is repre-
sented by the vector xs = (x1

s, ..., x
j
s, ..., x

p
s) where xj

s is the number of occurrences
of word xj in the document s, then the prototype g for a class Ui is represented
by gi = (g1

i , ..., gj
i , ..., g

p
i ) with gj

i =
∑

s∈Ui
xj

s.
Finally, the prototype of each class been fixed, every element is assigned to a

class according to its proximity to the prototype. The proximity is measured by
a classical distance between distributions (e.g. Euclidean distance):

d(x, y) =

√√√√ m∑
j=1

(xj − yj)2, m is the number of modalities.

When there are dependencies between paths3, we replace the above formula
by the following:

d(x, y) =

√√√√ p∑
k=1

mk∑
j=1

(xk
j − yk

j )2

where p is the number of variables, and mk is the number of modalities for the
variable k.

3 For complete paths (option root=true and leaf=true), there are no embedded paths
so (1) can be used.
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5 Evaluation and Metrics

Clustering evaluation is always a bit difficult, since, unlike classification, clus-
tering is supposed to discover significant clusters whose number is not known
in advance. However standard evaluation can be made on well known collection
were some existing classification can be used as a reference. Since training sets are
provided for the XML tracks we are able to evaluate our clustering approaches
using them. We used different standard measures and compared their behavior
when increasing the number of clusters and using different path lengths. We
recall below the definition of the four metrics we use: F-measure, entropy, purity
and corrected rand.

– The F-measure proposed by Larsen and Aone [16] combines the precision
and recall measures from information retrieval and treats each cluster as if
it were the result of a query and each class as if it were the desired answer
to that query. It is the harmonic mean between precision and recall.

– The Corrected Rand Index has been proposed by Hubert and Arabie [14]
to compare two partitions. This measure can be used to compare the result-
ing clusters with an existing partition, or to compare two partitions resulting
of different automatic clustering.

– Entropy: It measures the class distribution of each cluster. The smaller the
entropy value, the better the clustering solution. A perfect clustering solution
would be the one that leads to clusters that contain documents from only a
single class, in which case the entropy will be zero [28].

– Purity: It measures the percentage of documents in a cluster that belong to
the largest class of documents in this cluster. In general the larger the value
of purity, the better the clustering solution [28].

6 Experiments with the INEX Collections

The INEX XML mining track provides a number of collections for evaluat-
ing clustering methods. Some of them consist only of document tree structures
(structure-only collections), while the others correspond to XML documents with
textual content (structure and content collections). The training sets consist of
a subset of the documents in each collection, together with the class they be-
long to. As a consequence the expected number of clusters for each collection
is known in advance. Below we give a short summary of the test collections we
use for our experiments. Unfortunately we were not able to carry out all the ex-
periments before the workshop, in particular because of the size of the structure
and content collections.

6.1 The IEEE Collections

From the standard IEEE collection used in the INEX ad-hoc retrieval experi-
ments, the XML mining track’s organisers have derived two collections for XML
mining, namely INEX-s (structure only) and INEX-cs (content and structure).
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They preprocessed both collections in order to eliminate useless tags, as well as
to remove information (the name of the Journal) that would identify obviously
the class the document belongs to. For INEX-s, the clustering task is to identify
the two classes that correspond, first to Transactions Journals, second to other
Journals. It is expected that the two types of Journals use different parts of the
IEEE DTD and that articles could be easily partitioned into the two classes.

For INEX-cs, the clustering task, using both the structure and the content of
the articles, is to identify the six classes proposed in Denoyer [7] and built from
the 18 existing Journals.

Table 3. Results for Inex-s (training collection) for path length 3 and 4, and cluster
number set to 2 or 4

Path length Root Leaf No. of Clusters Fmeasure Corr.Rand Entropy Purity
3 T F 2 0.662 0.098 0.755 0.663
3 F T 2 0.667 0.105 0.745 0.667
3 T F 4 0.661 0.423 0.185 0.963
3 F T 4 0.549 0.005 0.728 0.682
4 T F 2 0.625 -0.044 0.871 0.650
4 F T 2 0.655 0.087 0.757 0.655
4 T F 4 0.542 0.208 0.457 0.857
4 F T 4 0.545 -0.001 0.737 0.675

6.2 The Movie Database Collections

The MovieDB corpus is a set of XML documents describing movies. It was built
using the IMDB database. It contains 9643 XML documents. Each document is
labelled by one thematic category which represents the genre of the movie in the
original collection and one structure category. There are 11 thematic categories
and 11 possible structure categories which correspond to transformations of the
original data structures. There are four resulting test collections for clustering
based only on structure, and two test collections for clustering using both content
and structure.

7 Results

Since training sets were provided, we use them to evaluate our approach before
getting from the track organisers the official results on the test collections.

7.1 IEEE Structure Collection

We first test our approach with different path lengths either starting at the root
or ending at the leaves. We present only a few results in Table 3: The best values
(especially entropy and purity) are obtained for documents represented by the
set of paths of length 3 starting from the root. It must be noticed that it happens
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Fig. 2. The repartition of classes Arti-
cles and Transactions on two clusters

Fig. 3. The repartition of classes Arti-
cles and Transactions on four clusters

for four clusters, not the two that were expected. There is nothing wrong with
this result since there is no intrinsic reason why some articles would not have an
overall structure more dissimilar to other articles than to Transactions.

Fig. 2 and Fig. 3 shows the repartition of the two (resp. four) clusters on
the two expected classes. We can see that in the case of four clusters, one class
(Transaction) maps quite closely to cluster 3, while the other three clusters
contain mostly articles. We have not tried to analyse more deeply what could
be the similarities between articles within these three clusters.

Then we sent two runs to the XML document mining track. The parameters
we used and the official results are shown in Table 4.

Table 4. Official Results for inex-s (test collection) for two runs

Run Path-length Root Leaf No. of Micro Macro Micro Macro
Clusters Entropy Entropy Purity Purity

Run 1 3 F T 2 0.744 0.627 0.663 0.627
Run 2 4 T F 4 0.109 0.137 0.984 0.878

These results confirm the results with the training set that clustering in four
clusters give better results than clustering in two clusters.

7.2 MovieDB Structure Collections

We did the same type of experiments for the four structured collections built
from the Movie databases. For each of the four collections we set the path length
alternatively to 3 and 4, with either root paths or leaf-ending paths. We cluster
the documents into 9, 11 or 13 clusters respectively, the expected number of
classes being 11.

Table 5 shows the measure values when clustering the training collection m-
db-s0. The results are always better when using leaf-ending paths over root
paths, unless they are identical when the path length is set to 4. The best value
for the purity is obtained when clustering into 11 clusters, but the differences for
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Table 5. Results for m-db-s0 (training collection) for path length 3 and 4, and cluster
number set to 9, 11 and 13

Path length Root Leaf No. of Clusters Fmeasure Corr.Rand Entropy Purity
3 T F 9 0.541 0.370 0.286 0.632
3 F T 9 0.708 0.575 0.154 0.819
3 T F 11 0.509 0.357 0.285 0.640
3 F T 11 0.642 0.506 0.151 0.820
3 T F 13 0.465 0.328 0.284 0.640
3 F T 13 0.595 0.473 0.151 0.819
4 T F 9 0.714 0.576 0.158 0.813
4 F T 9 0.714 0.576 0.158 0.813
4 T F 11 0.663 0.532 0.157 0.821
4 F T 11 0.663 0.532 0.157 0.827
4 T F 13 0.648 0.519 0.155 0.820
4 F T 13 0.648 0.519 0.155 0.820

other measures may not be all significant. We carried out similar experiments
with the other collections, but there are not shown here for lack of space.

Table 6 shows the official results for the four MovieDB collections for 11
clusters. As we can see, the quality of the results decreases with the increasing
difficulty from m-db-0 to m-db-3.

Table 6. Official Results for Movie-DB (test collections) for two runs

Coll. Run Path-lgth Root Leaf Micro Macro Micro Macro Mutual
Entropy Entropy Purity Purity Info

m-db-0 Run 1 3 F T 0.732 0.841 0.203 0.136 1.823
Run 2 4 T F 0.732 0.841 0.203 0.136 1.823

m-db-1 Run 1 3 F T 0.688 0.804 0.326 0.226 1.528
Run 2 4 T F 0.707 0.835 0.256 0.144 1.690

m-db-2 Run 1 3 F T 0.688 0.758 0.296 0.209 1.592
Run 2 4 T F 0.458 0.501 0.487 0.446 1.139

m-db-3 Run 1 3 F T 0.623 0.714 0.316 0.238 1.545
Run 2 4 T F 0.553 0.636 0.527 0.438 1.044

We also include in Fig. 4, the comparisons of our results with the runs sub-
mitted by other participants. Our approach scores in the top-middle range of the
four who have submitted results for the four collections. Although Candillier [1]
and Hagenbuchner [23] submitted results only for Movie-db-s-0, their results are
very promising.

7.3 Structure and Content Collection

In Vercoustre and al. [24] we had experimented the structure and content ap-
proach with two collections, including a small percentage of the INEX collection.
However we were not able to run our approach on the full Inex-cs collection, due
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Fig. 4. Comparison of clustering results for the Movie-db-s runs submitted to INEX
2005

to the large number of generated textual paths. We did not experiment with
m-db-cs collection but we expect that the same problem would occur.

Table 7 shows the number of different textual paths generated for different
parameters, for 10% of the collection.

Table 7. Number of generated textual paths for 10% of the inex-cs collection

type path-lgth Root Leaf No. of distinct paths
text 1 F T 313078
text+ tags 1 F F 340043
leaf path 2 F T 1271289
root path 3 T F 367082
root path 4 T F 387484

The number of paths increases with the length of paths, and, for a fix path
length, they are far more numerous for ending paths than for root paths since the
tree is larger at the leaves than at the root. Generating leaf paths is more costly
and even overflows the generating program when the collection is too large.

8 Conclusion

In this paper we proposed to represent XML documents by a set of their paths
generated according to a range of parameters. We evaluated our approach on
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some of the collections proposed by the INEX XML Mining track and we were
relatively successful on the structure-only collections.

However, we have not managed to cluster the full structure-and-content col-
lections, due to the large size of the generated vocabulary. We are thinking of
reducing the vocabulary by using the TF/IDF frequency of terms in each spe-
cific path, rather than the frequency of textual paths in a document and the
collection respectively.

In both cases, structure and structure-and-content, it could also be beneficial
to reduce the space dimension before clustering, for example by using Principal
Component Analysis like in Liu and al. [18].
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In Actes des 6ème journées Extraction et Gestion des Connaissances (EGC 2006),
Revue des Nouvelles Technologies de l’Information (RNTI-E-6), pages 433–444,
Lille, France, January 2006.

25. J. Yi and N. Sundaresan. A classifier for semi-structured documents. In KDD
’00: Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 340–344, New York, NY, USA, 2000. ACM Press.

26. J. P. Yoon, V. Raghavan, V. Chakilam, and L. Kerschberg. BitCube: A Three-
Dimensional Bitmap Indexing for XML Documents. Journal of Intelligent Infor-
mation Systems, 17(2-3):241–254, 2001.

27. M. J. Zaki and C. C. Aggarwal. XRules: an effective structural classifier for XML
data. In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 316–325, New York, NY, USA,
2003. ACM Press.

28. Y. Zhao and G. Karypis. Criterion functions for document clustering: Experiments
and analysis. Technical Report 01–40, Department of Computer Science, University
of Minnesota, Minneapolis, MN, 2001.



Sequential Pattern Mining for Structure-Based
XML Document Classification

Calin Garboni1,2, Florent Masseglia2, and Brigitte Trousse2,�

1 West University of Timisoara, Romania
2 INRIA Sophia Antipolis, AxIS Research Team 2004,

route des Lucioles, BP93,
F-06902 Sophia Antiplis Cedex, France

Surname.Name@inria.fr
http://www-sop.inria.fr/axis/

Abstract. This article presents an original supervised classification
technique for XML documents which is based on structure only. Each
XML document is viewed as an ordered labeled tree, represented by
his tags only. Our method has three steps. After a cleaning step, we
characterize each predefined cluster in terms of frequent structural sub-
sequences. Then we classify the XML documents based on the mined
patterns of each cluster.

1 Introduction

This work is in the context of the Document Mining track1 of the Inex2 Initiative.
The objective is to bridge the gap between Machine Learning and Information
Retrieval. The Document Mining challenge focused on classification and cluster-
ing of XML documents using only their structure or using both their structure
and their content. In our work, we use only the structure information of the
XML documents. Our goal is to show the relevance of using only the struc-
ture information in order to detect different “structural families of documents”.
Each XML document has a single label corresponding to the structural source
of the document. Our work consists of characterising each predefined cluster
in terms of frequent “structural” patterns and then classifying ordered labeled
trees.

Section 2 introduces the used basic theoretical concepts of sequential pattern
mining. Section 3 describes how to characterize each cluster of XML docu-
ments in terms of frequent structural subsequences. After presenting some related
works, we present our approach in Section 4. Section 5 describes some experi-
ments and results. Finally some conclusions and perspectives are presented.

� The authors want to thank Sergiu Chelcea for his useful support in the experiments.
1 URL: http://xmlmining.lip6.fr/Home
2 Inex: INitiative for the Evaluation of XML Retrieval URL:http://inex.is.informatik.
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2 Mining Sequential Patterns

In this section we define the sequential pattern mining problem in large databases
and give an illustration. The sequential pattern mining definitions are those given
by [1] and [10].

In [1], the association rules mining problem is defined as follows:

Definition 1. Let I = {i1, i2, ..., im}, be a set of m literals (items). Let D =
{t1, t2, ...tn}, be a set of n transactions ; Associated with each transaction is a
unique identifier called its TID and an itemset I. I is a k-itemset where k is the
number of items in I. We say that a transaction T contains X , a set of some
items in I, if X ⊆ T . The support of an itemset I is the fraction of transactions
in D containing I: supp(I) = ‖{t ∈ D | I ⊆ t}‖/‖{t ∈ D}‖. An association
rule is an implication of the form I1 ⇒ I2, where I1, I2 ⊂ I and I1 ∩ I2 = ∅.
The rule I1 ⇒ I2 holds in the transaction set D with confidence c if c% of
transactions in D that contain I1 also contain I2. The rule r : I1 ⇒ I2 has
support s in the transaction set D if s% of transactions in D contain I1 ∪ I2 (i.e.
supp(r) = supp(I1 ∪ I2)).

Given two parameters specified by the user, minsupp and minconfidence, the
problem of association rule mining in a database D aims at providing the set of
frequent itemsets in D, i.e. all the itemsets having support greater or equal to
minsupp. Association rules with confidence greater than minconfidence are thus
generated.

As this definition does not take time into consideration, the sequential patterns
are defined in [10]:

Definition 2. A sequence is an ordered list of itemsets denoted by <
s1s2 . . . sn > where sj is an itemset. The data-sequence of a customer c is
the sequence in D corresponding to customer c. A sequence < a1a2 . . . an >
is a subsequence of another sequence < b1b2 . . . bm > if there exist integers
i1 < i2 < . . . < in such that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin .

Example 1. Let C be a client and S=< (3) (4 5) (8) >, be that client’s purchases.
S means that “C bought item 3, then he or she bought 4 and 5 at the same
moment (i.e. in the same transaction) and finally bought item 8”.

Definition 3. The support for a sequence s, also called supp(s), is defined as
the fraction of total data-sequences that contain s. If supp(s) ≥ minsupp, with a
minimum support value minsupp given by the user, s is considered as a frequent
sequential pattern.

Example 2. Let us consider the data given in table 1. This can be the result
of a pre-processing step performed on raw data from a shop meaning that at
time d1 (for instance) customer 1 bought item 10. The goal is thus, according to
definition 3 and by means of a data mining step, to find the sequential patterns
in the file that can be considered as frequent. On of the resulting sequences may
be, for instance, < ( 10 ) ( 30 ) ( 20 ) ( 30 ) > (with the file illustrated
in figure 1 and a minimum support given by the user: 100%).



460 C. Garboni, F. Masseglia, and B. Trousse

Table 1. File obtained after a pre-processing step

Client d1 d2 d3 d4 d5
1 10 30 40 20 30
2 10 30 20 60 30
3 10 70 30 20 30

3 Characterizing a Collection of XML Documents by
Frequent Structural Subsequences

In this section, we introduce the principles of structure discovery from a set of
XML documents. The idea is similar to the method developed in [5]. Our goal
is to extract a schema that will be representative of the whole set of documents.
In this context, “representative” will be interpreted as “frequent”. In fact, we
consider that a frequent sub-tree in a collection of XML documents may be
considered as a interesting knowledge regarding this collection. This sub-tree
can be exploited as a further DTD (see 4) or may stand for a characteristic
of the collection (this is the main idea of our approach and will be detailed in
section 5).

Fig. 1. A frequent sub-tree in a collection of XML documents

Figure 1 gives an illustration of frequent sub-tree mining in a collection of
XML documents. Let us consider the documents given in the upper part of figure
1 (respectively labeled “A” and “B”). A frequent sub-tree mining approach is
intended to find the sub-tree(s) common to at least x% (the minimum support)
documents of the collection. With the documents labeled “A” and “B” and a
minimum support of 100%, the extracted frequent sub-tree is described in the
lower part of figure 1. Actually, the tree described by a root node containing
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“movie” and having two children (“title” and filmography”, which is followed
by “cast) is embedded in both “A” and “B”. Furthermore, there is no larger
frequent sub-tree in this collection.

Our method will rely on structure discovery based on sequential pattern min-
ing. For this purpose, we will use a technique intended to transform any XML
tree into a sequence. This technique is described below.

In order to perform such a transformation, the nodes of the XML tree first have
to be mapped into identifiers. Then each identifier is associated with its depth in
the tree. Finally a depth-first exploration of the tree will give the corresponding
sequence. We call this last step the “reduction”. The transformation is illustrated
by figure 2. The original XML document structure (upper left) is first mapped
into a new labelled tree. For instance, the node “filmography” becomes “C2” wich
corresponds to the identifier of “filmography” (C) associated with its depth (2)
in the tree. The next step (reduction) aims at writing the corresponding sequence
after a depth first navigation in the tree.

Fig. 2. Transformation of an XML tree into a sequence

Once the whole set of sequences (corresponding to the XML documents of a
collection) is obtained, a traditional sequential pattern extraction algorithm is
able to extract the frequent sequences. Those sequences, once mapped back into
trees, will give the frequent sub-trees embedded in the collection.

4 Related Work

We present here previous works related to our approach. Basically, the studied
topics are the following: structure inference from semi-structured data, frequent
tree mining, DTD mining and clustering of XML documents.

4.1 Schema Mining

Methods inferring structure from similar semi-structured documents are de-
scribed in [5]. Efficient approaches for mining regularities are proposed. To
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improve the candidate generation, some pruning strategies are described in [12].
In [8], the authors propose a method to extract a ”reasonably small approxima-
tion” for typing a large and irregular data collection.

4.2 Mining DTDs from a Collection of XML Documents

Related to the previously presented topic, mining DTDs is based on the fact
that the semi-structured documents are in the XML format. Here is the formal
description of the problem:

Let e be an element that appears in the XML documents (< e > < /e >)
Given a set I of N input sequences nested within element e, compute a concise
and precise DTD for e such that every sequence in I is in conformity with the
DTD.

Let us cite some systems trying to solve this problem, such as the IBM Alpha-
works DDbE tool. XTRACT [4] is a system that automatically extracts DTDs
from XML documents. It consists in Generalization / Factorization / MDL mod-
ules for inferring DTDs.

4.3 Frequent Tree Mining

Frequent tree mining refers to an important class of data mining tasks, namely
patterns extraction. Many algorithms for finding tree-like patterns are devel-
oped. Basically, they adopt a straight-forward generate-and-test strategy [7].
TreeFinder [11] does clustering by counting co-occurrences of labelled pairs (in
an Apriori manner). It computes the maximal trees. TreeMiner [13] is based on
mining frequent subtrees using the ”scope-list” data structure.

4.4 Clustering of XML Documents

Grouping XML documents in different classes with non supervised classification
method is generally realized in the following manner:

Firstly the XML files are encoded such that each document is represented by
an individual. Then, a distance measure is defined in order to group the similar
individuals. The main differences between the XML documents clustering algo-
rithms consist in choosing the distance between any pair of clusters (including
single document cluster).

In [9], the authors partition the XML collection into smaller classes in order
to infer, for each one a DTD. To compare the XML documents, they assign a
different cost based on the tree editing operators. In [2] the authors use almost
the same tree editing distance and the structural summaries in order to perform
the XML clustering. S-GRACE algorithm [6] considers the distance based on
s-graph. XRep [3] is designed on three stages: tree matching, merging of trees
and pruning of the merge tree.

5 Our XML Document Supervised Classification Method

In this section, we present our supervised method for classifying the XML doc-
uments based on their structure. First of all we consider that a set of clusters is
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Fig. 3. Overview of the clustering method

provided coming from a previous clustering on a past collection. More formally,
let us consider S1 a first collection of XML documents (the training collection)
and C = {c1, c2, ...cn} the set of clusters defined for the documents of S1. Let
us now consider S2 a new collection of XML documents (the test collection).
Our goal is to classify the documents of S2 by taking into account the set of
clusters C.

5.1 Overview

To this end, our method will perform as illustrated in figure 3. It is based on the
following steps:

1. First of all, we perform a cleaning step: we extract the frequent tags
embedded in the collection. This step corresponds to step “1” in figure
3. The main idea is to remove irrelevant tags for clustering operations. A
tag which is very frequent in the whole collection may be considered as
irrelevant since it will not help in separating a document from another (the
tag is not discriminative).

2. Then we perform a data mining step on each cluster from the training
collection (namely “C” in the foreword of this section). This step cor-
responds to step “2” in figure 3. For each cluster, the goal is to trans-
form each XML document into a sequence (according to the techniques
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described in section 3). Furthermore, during the mapping operation, the
frequent tags extracted from step 1 are removed. Then on each set of se-
quences corresponding to the original clusters, we perform a data mining
step intended to extract the sequential patterns. For each cluster Ci we
are thus provided with SPi the set of frequent sequences that character-
izes Ci.

3. Finally the last step of our method relies on a matching between each
document of the collection and each cluster which is characterized by a set
of frequent structural subsequences (extracted from the second step). The
following subsection describes the used matching technique. This last step
corresponds to step 3 in figure 3.

5.2 Measuring the Distance Between Documents and Clusters

We tested several measures in order to decide which class each test document
belongs to. The two best measures are based on the longest common subse-
quence. They compute the average matching between the test document and
the set of sequential patterns which describes a cluster. More formally, the score
for the document Di in the cluster Cj is defined as follows:

score(Di, Cj) =

∑|Cj|
k=1

|LCS(Di,spCj
(k))|

|spCj
k|

|Cj |
Where LCS(Di, spCj(k)) is the longest common subsequence between the doc-
ument and the kth sequential pattern of Cj .

However, we noticed some particular cases where the scores of a document
could be the same for two different clusters. In order to tackle this problem, we
provide a modified score measure, which is defined as follows:

score2(Di, Cj) =

∑|Cj|
k=1

i×|LCS(Di,spCj
(k))|

|spCj
k|

|Cj |
Where i is equal to:

– 0.8 if spCjk is a subsequence of Di (100 % matching) and spCj k is “long”
(|spCj k| > 0.7 × (maximum length of a sequential pattern))

– 0.6 if spCjk is a subsequence of Di (100 % matching) and spCj k is “short”
(|spCj k| < 0.7 × (maximum length of a sequential pattern))

– 0.4 if spCjk only matches Di at 50 %.
– 0.2 for the remaining cases.

6 Experiments

In order to evaluate and validate our approach, we have exploited the documents
provided by one of the INEX’05 tracks on document mining: the MovieDB. The
extraction methods are written in C++ on a Pentium PC running a Red-Hat
system.
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6.1 Data

The MovieDB corpus is a collection of heterogeneous XML documents describing
movies. It was built using the IMDB database. It contains 9643 XML documents.
There are 11 predefined structure categories which correspond to transformations
of the original data structure. Each cluster is characterized in terms of frequent
sequential patterns (cf. the step 2). For example, we obtain for the following
sequential patterns for cluster 1 and cluster 2:

– Cluster 1:
• < ( 0 movie ) ( 1 title ) ( 1 url ) ( 1 Country of Production ) ( 2 item )

( 2 item ) ( 1 filmography ) ( 3 name ) >
• < ( 0 movie ) ( 1 title ) ( 1 url ) ( 1 Country of Production ) ( 2 item )

( 2 item ) ( 2 item ) ( 1 filmography ) >
• < ( 0 movie ) ( 1 title ) ( 1 url ) ( 1 Filmed In ) ( 2 item ) ( 2 item )

( 1 filmography ) >
• ...

Results for the first score (C.f. 5.2):

Results for the second score (C.f. 5.2):

Fig. 4. Experiments on MovieDB Collection m-db-s-0-test
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– Cluster 2:
• < ( 0 CL ) ( 2 DC ) ( 2 DC ) ( 2 DC ) ( 2 DC ) >

• < ( 0 CL ) ( 1 BQ ) ( 2 AX ) ( 3 EH ) ( 3 DT ) ( 3 EH ) >

• < ( 0 CL ) ( 1 BQ ) ( 3 EH ) ( 3 EH ) ( 3 EH ) ( 3 DT ) >

• < ( 1 EJ ) >

• ...

MovieDB has been preprocessed using a Porter stemmer. There are four col-
lections, structure only based, with the different degrees of difficulty and over-
lapping of the classes (files m db s 0 to 3). A training collection was provided.
The size of this collection was equal to the size of the document collection to be
classified. For the structure only track, we use only the tree structure, without
any attributes or content of the XML documents.

Results for the first score (C.f. 5.2):

Results for the second score (C.f. 5.2):

Fig. 5. Experiments on MovieDB Collection m-db-s-0-test
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Fig. 6. Experiments on MovieDB Collection

6.2 Results

In this section we will give some results based on our approach. Below is
given a part of the table built for the XML documents of the test collection
(cf. step 3.).

In figure 4 the classification result is provided for the test file 0
( m-db-s-0-test) with both score functions defined in section 5.2. For each
predefined class, the recall is calculated. The scores are quite good, except the
6th and the 11th classes due to the strong similarity of their extracted sequential
patterns. Indeed, the candidates are allocated to the most general class, i.e. the
class which contains most of the sequential patterns describing another class.
Moreover when two scores are equal for a same document, whe arbitrary chose
the first class. In figure 5 we report the classification result for the test file 3
( m-db-s-3-test) with both score functions. We can observe that the differ-
ence between the functions is clear when the level of noise in the files increases.
This can be observed for clusters C2, C4 and C5 for instance, where the second
score performs better than the first one.

In Figure 6 the degradation of the results according to the degradation of the
four data collections is presented.

Based on the synthesis made by the organisers during the Inex’05 workshop
related to the Document Mining track our result is situated in the top 3 ranking
(our recall being quite good, between 0.8 and 0.95).

7 Conclusion

In this article we introduced a new supervised classification method for XML
documents which is based on a linearization of the structural information of
XML documents and on a characterization of each cluster in terms of frequent
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sequential patterns. Experiments on the MovieDB collection validated the effi-
ciency of our approach.

As perspective we plan to improve our method for better taking into account
certain types of XML documents clusters characterised today by a very simi-
lar set of frequent sequential patterns. Various ways of measuring the distance
between a document and each cluster will be studied.
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http://www.pertinence.com

Abstract. Most of the existing methods we know to tackle datasets
of XML documents directly work on the trees representing these XML
documents. We investigate in this paper the use of a different kind of
representation for the manipulation of XML documents.

Our idea is to transform the trees into sets of attribute-values, so
as to be able to apply various existing methods of classification and
clustering on such data, and benefit from their strengths. We apply this
strategy both for the classification task and for the clustering task using
the structural description of XML documents alone.

For instance, we show that the use of boosted C5 [1] leads to very good
results in the classification task of XML documents transformed in this
way. The use of SSC [2] in the clustering task benefits from its ability to
provide as output an interpretable representation of the clusters found.
Finally, we also propose an adaptation of SSC for the classification of
XML documents, so that the produced classifier is understandable.

1 Introduction

Most of the existing methods we know to tackle datasets of XML documents
directly work on the trees representing these XML documents. Some methods
are based on the use of metric distances to compare the trees: the edit distance,
minimum number of mutations required to change a tree into another one [3,4],
or the number of paths they share [5, 6, 7]. Other methods aim at discovering
frequent subtrees in the data [8, 9].

We investigate in this paper the use of a different kind of representation for the
manipulation of XML documents. We propose to transform the trees into sets of
attribute-values. In [10], the authors used such an idea to take into account the
structure when classifying XML documents. But the representation they chose
for the trees was a simple bag-of-tags. We propose to use richer features: the
set of parent-child relations, the set of “next-sibling” relations, the set of paths
starting from the root and the arity of the nodes.

The use of such representations allows us to apply various existing methods for
classifying or clustering sets of XML documents. And we can thus benefit from
the strengths of these methods. In particular, our experiments exhibit very good
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results when applying boosted C5 [1] on sets of XML documents transformed in
this way. The use of SSC [2] for clustering tasks on such transformed datasets
also benefits from its ability to provide as output an interpretable representation
of the clusters found. Moreover, we also propose in this paper an adaptation of
SSC for the classification of XML documents, so that the produced classifier is
understandable.

The remainder of the paper is organized as follows: in section 2, we present
our proposed methodology to transform a tree into a set of attribute-values,
and how such new dataset can be used for classification tasks; in section 3, we
describe the adaptation of the SSC algorithm for XML datasets; the results
of our experiments, conducted on the datasets provided by the XML mining
challenge at INEX [11] on the structure only tasks, are then reported in section 4;
finally, section 5 concludes the paper and suggests topics for future research.

2 Tree Transformation

There are many possible ways to transform a tree into a set of attribute-values.
The first basic possibility is to transform the tree into the set of labels present at
its nodes. An XML document would thus be transformed into a simple bag-of-
tags. If the different sets of documents to be identified use different sets of tags,
this representation would be sufficient to distinguish them. However, by doing
that, we do not take into account the structure of the XML trees. To go further,
we propose to construct the following attributes from a set of available trees:

– the set of parent-child relations (whose domain is the set of pairs of tags
labelling the nodes);

– the set of next-sibling relations (whose domain is the set of pairs of tags
labelling the nodes);

– the set of distinct paths (including sub-paths), starting from the root (whose
domain is the set of finite sequences of tags labelling the nodes).

So, we create as many new attributes as distinct features are encountered in the
training set. For each of them, their value for a given document is the number of
their occurences in this document. Finally, we also define as many new attributes
as there are absolute distinct node positions represented in the trees. The identi-
fier of such a node position can be coded, for example, by a sequence of integers:
the root is coded 0, its first child is coded 0.0, its second child 0.1, etc. For every
identifier of a node position, the value of the attribute for a document is the
arity of the node, that is the number of its child nodes in the document (whose
domain is an integer). So the new introduced attributes all take their value into
the set of natural numbers. As an intuition, such representation should allow to
distinguish, for example:

– two sets of documents that use different tags, or in which the number of
some given tags are different;
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– one set of documents in which a given relation (parent-child or next-sibling)
between some given tags is allowed, from another set that does not allow
such a relation;

– or a set of documents in which the number of children of a given node position
is different from the one in another set of documents.

Such representation could lead to a high number of generated attributes. So
the algorithms used to tackle such new datasets should be able to handle many
attributes, and to perform feature selection during their learning process. In
a classification task, C5 [1] is for example well suited. In a clustering task, a
subspace clustering algorithm, that is a clustering algorithm able to characterize
every distinct cluster on a limited number of dimensions (eventually distinct for
each cluster) could be useful. We describe such a method in the next section.

3 Algorithm SSC

SSC [2] is a subspace clustering algorithm based on the use of a probabilistic
model under the assumption that the clusters follow independent distributions
on each dimension. It uses the well-known EM algorithm [12]. SSC has been
shown to be effective, and it is able to provide as output an interpretable rep-
resentation of the clusters found, as a set of rules, and a way to visualize them
effectively. Moreover, a new step of hard feature selection has been added to keep
only the best attributes for each cluster, and thus be less sensitive to irrelevant
dimensions, and faster.

In the next subsections, we first formalize the different steps of the method. We
then present an adaptation for facing datasets of XML documents, and another
adaptation for supervised classification. One of the interests of this method is
that it provides an output which can be represented by a hierarchy of tests.

3.1 Formalization of the Method

Let us first introduce some notations. We denote by N the number of data points−→
Xi of the input dataset D, and by M the number of dimensions on which they
are defined. We only present here the case where the dimensions are numerical,
but the adaptation for datasets containing also categorical dimensions can be
found in [2].

The basis of our model is the classical mixture of probability distributions
θ = (θ1, ..., θK) where each θk is the vector of parameters associated with the kth

cluster to be found, denoted by Ck (we set to K the total number of clusters). In
our model, we suppose that the data follow gaussian distributions. So the model
has the following parameters θk for each cluster Ck: πk denotes its weight, μkd

its mean and σkd its standard deviation on dimension d. We then use the EM
algorithm [12] to find the model parameters that best fit the data.

The E-step consists in computing the membership probability of each data
point −→

Xi to each cluster Ck with parameters θk. In our case, dimensions are
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supposed to be independent. So the membership probability of a data point to
a cluster is the product of membership probabilities on each dimension:

P (−→Xi|θk) =
M∏

d=1

1√
2πσkd

e
− 1

2

(
Xid−μkd

σkd

)2

P (−→Xi|θ) =
∑K

k=1 πk × P (−→Xi|θk) and P (θk|−→Xi) = πk×P (−→Xi|θk)
P (−→Xi|θ)

Then the M-step consists in updating the model parameters according to the
new class probabilities as follows:

πk =
1
N

∑
i

P (θk|−→Xi)

μkd =
∑

i Xid×P (θk|−→Xi)∑
i P (θk|−→Xi)

and σkd =
√∑

i P (θk|−→Xi)×(Xid−μkd)2∑
i P (θk|−→Xi)

These two steps iterate until a stopping criterion is reached. Usually, it stops
when the log-likelihood of the model to the data, LL(θ|D) =

∑
i log P (−→Xi|θ),

increases less than a small positive constant δ from one iteration to another.
But in order to cope with the problem of slow convergence with the classical
EM algorithm, it has been shown in [2] that adding the following k-means like
stopping criterion is effective: stop whenever the membership of each data point
to their most probable cluster does not change from one iteration to another. To
do this, we introduce a new view on each cluster Ck, corresponding with the set
of data points belonging to it:

Sk = {−→
Xi|ArgmaxK

j=1P (−→Xi|θj) = k}

The set of all Sk thus define a partition on the dataset.
And finally, to cope with the problem of sensitivity to the choice of the initial

solution, we run the algorithm many times with random initial solutions and keep
the model that optimizes the log-likelihood of the model to the data LL(θ|D).

Moreover, a new step of hard feature selection has been added to keep only
the best attributes for each cluster. This is done by using a user parameter,
denoted by nb ds, that specifies how many attributes to keep for each cluster.
Thus, for each cluster, the attributes of highest weights are kept, and the others
are ignored. These weights Wkd are computed as the ratio between local and
global standard deviations:

Wkd = 1 − σ2
kd

σ2
d

, with σ2
d =

1
N

∑
i

(Xid − μkd)2

To make the results as comprehensible as possible, we now introduce a third
view on each cluster, corresponding to its description as a rule defined with as
few dimensions as possible.

Although we have already selected a subset of dimensions relevant for each
cluster, it is still possible to prune some and simplify the clusters representation
while keeping the same partition of the data. See figure 1 as an example. In
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this case, the cluster on the right is dense on both dimensions X and Y . So its
true description subspace is X × Y . However, we do not need to consider Y to
distinguish it from the other clusters: defining it by high values on X is sufficient.
The same reasoning holds for the cluster on the top and the dimension Y .

X

Y

Fig. 1. Example of minimal description

To do this dimension pruning, we first create the rule Rk associated with the
current cluster Ck. We now only consider the set of dimensions considered as
relevant according to the previous selection, and associate with the rule Rk the
smallest interval containing all the coordinates of the data points belonging to
Sk. We then compute the support of the rule (the set of data points comprised
in the rule). This step is necessary since it is possible that some data points
belong to the rule but not to the cluster. And then, for all relevant dimensions d
presented in ascending order of their weights Wkd, we delete the dimension from
the rule if the deletion does not modify its support.

3.2 Adaptation for Clustering XML Documents

For ease of interpretation, and to speed up the algorithm for clustering XML
documents based on their structure, we propose to adapt SSC so that the dataset
is recursively cut into two parts according to a given set of attributes associated
with the trees. The output of our clustering method is then a hierarchy in which
each node represents a test on various attributes.

Before giving more details on our procedure, let us introduce some notations.
A denotes the set of possible attributes associated with the XML documents. As
presented in the previous section, A can be partitioned into groups of attributes
of increasing complexity:

– we call A1 the set of tags,
– A2 is the set of parent-child relations,
– A3 is the set of next-sibling relations,
– A4 is the set of node positions,
– and A5 is the set of paths starting from the root.

A is thus composed of SA = 5 classes of attributes. Finally, we denote by
Cut(Ck, Ai) the partitionning into two parts of the dataset that is made of the
documents included in the cluster Ck, and transformed with the given set of
attributes Ai.
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The main steps of our new clustering method are presented by algorithm 1.
It consists in choosing at each step the cut of highest interest, among all the
possible cuts of the current clusters Ck for k ∈ [1..K] on the possible sets of
attributes Ai ∈ A, until the desired number of clusters is reached. The interest of
partitionning the elements of the cluster Ck with the attributes of Ai is computed
as the ratio between the log-likelihood of a partition with two clusters and the log-
likelihood of a partition with only one cluster, weighted by the number of data
points in Ck, to prefer the divisions of clusters containing many data points.
The output of the procedure is a hierarchy in which each node corresponds to a
membership test to a rule, created as presented in the previous subsection, and
defined with as few attributes as possible.

Algorithm 1. SSC for XML
Input: the dataset D of XML documents and the desired number of clusters nb clus

- set K, the current number of clusters of the partition, to 1
- initialize the unique cluster C1 with all the documents of the dataset D
- create a new empty hierarchy H
while K �= nb clus do

for all k ∈ [1..K] do
for all i ∈ [1..SA] do

- compute the interest of Cut(Ck, Ai)
end for

end for
- select and perform the cut of highest interest
- compute the associated rule and add it to the hierarchy H

end while
Output: the hierarchy H , with nb clus − 1 tests

3.3 Adaptation for Understandable Classification

In order to benefit from the ability of the previously presented method to provide
understandable results, we now propose to adapt it for supervised classification.
The new method has two main steps: a first step that is clustering like but uses
the classes, and a second step that is completely guided by the classes.

The first step is described by algorithm 2 and consists in a clustering phase
that allows to mix various classes in one cluster but does not allow a class to be
splitted into different clusters. At this step, we prefer that a cutting rule is defined
on the tags attributes better than on any other set of attributes, because they
are simpler attributes. In the same way, we prefer to use attributes representing
relations between tags (parent-child or next-sibling) than paths information. So
more generally, we prefer using Ai than Aj if i < j. That’s why we perform a cut
each time it is possible, rather than comparing the interest on various possible
cuts, as is done for clustering. The same reasoning will also holds in the next step.

The second step of our method is described by algorithm 3. It takes as input
the output of the previous step and consists in separating the classes that are still
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Algorithm 2. Step 1
Input: the dataset D of XML documents

- initialize the unique cluster C1 with all the documents of the dataset D
- create a new empty hierarchy H
- set CUT = 1
while CUT = 1 do

- set CUT = 0
for all k ∈ [1..K] do

- set CUTk = 0 and i = 1
while CUTk = 0 and i <= SA do

if in Cut(Ck, Ai), no class is splitted into different parts then
- perform the partitionning
- compute the associated rules and update the hierarchy
- set CUTk = 1 and CUT = 1

else
- i = i + 1

end if
end while

end for
end while

Output: the hierarchy H , and the current partition

embedded in the same clusters. It is itself composed of two main steps: the first
one tries to distinguish the classes using rules, in order to be as understandable
as possible, while the second one uses probabilistic models that are richer models,
able to fit more complex decision surfaces.

1. If a rule found is able to discriminate one class from the others, then this
rule is used as the next test in the hierarchy. As has been motivated earlier,
a split is performed as soon as possible.

2. Then, if no rule has been found that is able to discriminate one class from the
others in one given cluster, we test the error rates obtained in cross-validation
with probabilistic models generated on each possible sets of attributes, and
select the one that leads to the lowest error rate as the next test in the
hierarchy.

So in the final hierarchy, the tests on the nodes can be of two different natures:
they can correspond to membership tests to rules, or to probability tests on prob-
abilistic models. Each of these tests are perfomed on only one set of attributes
at a time.

4 Experiments

Our experiments were conducted on the datasets provided by the XML min-
ing challenge at INEX on the structure only tasks. The classification method
presented in section 2 was applied on all datasets: inex-s, m-db-s-0, m-db-s-1, m-
db-s-2 and m-db-s-3. The results are presented in the first subsection. The other
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Algorithm 3. Step 2
Input: the hierarchy H and the partition from the first step

for all k ∈ [1..K] do
while Ck contains different classes do

for all i ∈ [1..SA] do
for all class ∈ Ck do

if a rule is able to distinguish the class from the others then
- perform the partitionning and update the hierarchy

end if
end for

end for
if no split has been done then

for all i ∈ [1..SA] do
- compute the classification error rate in cross-validation of the probabilistic
model generated on the attributes Ai

end for
- choose the model that leads to the lowest error rate and update the hierarchy

end if
end while

end for
Output: the hierarchy H

two methods presented in section 3 were only applied on the m-db-s-0 dataset,
due to the lack of time. Their results are presented in the second subsection.

4.1 Boosted C5 on the Transformed Datasets

Table 1 presents the number of new attributes generated by transforming the
XML trees into attribute-values for each dataset. We can thus observe that our
method creates many new attributes. In particular, the number of attributes
representing the paths in the trees is very high.

Table 1. Number of attributes generated for each dataset

number number of number of number of number
dataset of parent-child next-sibling node of total

tags relations relations positions paths
inex-s 150 1038 827 2475 3674 8164

m-db-s-0 197 2172 419 6575 320 9683
m-db-s-1 197 6477 5617 9159 16772 38222
m-db-s-2 196 8953 7455 9183 25628 51415
m-db-s-3 199 10639 9557 8537 37576 66508

We applied the algorithm C5 [1] boosted 10 times on these datasets. However,
as the number of attributes was too high for C5 on the m-db-s-2 and m-db-s-3
datasets, we did not use the attributes representing the paths in the trees for
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these datasets. The error rates obtained in 10-fold cross-validations on all the
datasets are provided in table 2, and show that our proposed methodology has
reasonable error rates.

Table 2. Error rates of boosted C5 on the datasets transformed into attribute-values

dataset error rate
inex-s 0.011

m-db-s-0 0.026
m-db-s-1 0.038
m-db-s-2 0.062
m-db-s-3 0.062

Table 3 then reports the micro-recall and macro-recall computed on the test
datasets using this method. Datasets m-db-s are all based on the same initial
dataset but each succesive dataset contains more noise than the previous one.
The results of our method thus shows that it is robust to the presence of noise.

Table 3. Micro-recall and macro-recall of boosted C5 on the test datasets transformed
into attribute-values

dataset micro-recall macro-recall
inex-s 0.941 0.958

m-db-s-0 0.968 0.960
m-db-s-1 0.966 0.956
m-db-s-2 0.942 0.932
m-db-s-3 0.947 0.935

4.2 Adaptations of SSC

For reasons of time, the algorithms adapted from SSC were only experimented on
the m-db-s-0 dataset. The parameter nb ds defined in section 3, and representing
the number of most relevant dimensions to be selected for each cluster, was set
to 10.

Our clustering method managed to identify correctly the classes number 1 to
5. It mixed classes number 7 and 9 together, and the remaining classes were also
mixed together. This clustering thus leads to a micro purity of 0.78, a macro
purity of 0.75, a micro entropy of 0.18, a macro entropy of 0.21, and a mutual
information of 1.87 on test data.

The hierarchy formed is presented by figure 2. R4, R10, R6, and R7 are
conjunctions of 10 tests:

– R4 is defined on the attributes representing the next-sibling relations,
– R10 concerns the number of children according to the node positions,
– R6 is defined on the attributes representing the tags,
– and R7 concerns the number of children according to the node positions.
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Tag(title) = 0 & Tag(BD) ≤ 2

Parent(AW − BC) = 1

R4

4 5

Tag(BQ) = 1

Next − sibling(CU − CV ) = 1

3 2

R10

R6

6 R11

11 8

10

Tag(title) = 1

1 R7

7 9

Fig. 2. Tree obtained when clustering dataset m-db-s-0

Finally, R11 tests whether the number of paths (BE-AL-AT) is lower or equal
to 1, and if there is no path (BE-AL-AT-AR).

The adaptation of our method for supervised learning leads to very interesting
results. The hierarchy obtained is presented by figure 3. We can thus observe
that the given hierarchy is very understandable.

– S2, S3, S4 and S5 represent the probabilities on models based on next-sibling
relations, respectively concerning classes 2, 3, 4 and 5.

– P6 and P11 represent the probabilities on models based on the paths of the
trees, concerning classes 6 and 11.

– And Nb(0.0.0) indicates the number of children of the first grand-child of
the root.

Thus, for example, the membership to class 1 only depends on the presence of
the tag named movie. And in the same way, the membership to class 8 only
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Tag(movie) = 1

1 Tag(CL) = 1

S2 > S3

2 3

Tag(BG) = 1

S4 > S5

4 5

Tag(AJ) = 1

Tag(BA) = 0

7 9

Parent(AT − AQ) = 0

8 Nb(0.0.0) = 0

10 P6 > P11

6 11

Fig. 3. Tree obtained for classifying dataset m-db-s-0

depends on the absence of the tags movie, CL, BJ, AJ, and the presence of the
parent-child relation between tags AT and AQ. The error rate of this tree on the
train dataset is 0.03. It misclassified very few documents, except those of classes
6 and 11 that were mixed.

The results of this method on test data were also very reasonable, leading to
a micro-recall of 0.906 and a micro-recall of 0.924.

5 Conclusion

We have shown in this paper that transforming XML document trees into sets of
attribute-values can lead to very promising results, provided that these attributes
are considered as sets of increasing complexity. This representation allows us to
benefit from the strengths of existing methods. We have also presented a new
original method able to provide an interpretable classifier as an output.

We conjecture it is now possible to go further in the way we transform the
trees. For instance, it is possible to consider as new attributes some forks of the
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trees, of some given height and width, or to identify in which part of the trees
the tags or relations between tags are present. But, as has been shown in the
experiments part of the paper, we already constructed a lot of new attributes
with our method. And by using such attributes, we already obtain very good
results.

To take into account such possible differences between trees, a special care
should now be taken to find a compromise between the number of new created
attributes and the information they carry. This point should be studied in further
researchs.
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Abstract. Self-Organizing Maps capable of encoding structured information
will be used for the clustering of XML documents. Documents formatted in XML
are appropriately represented as graph data structures. It will be shown that the
Self-Organizing Maps can be trained in an unsupervised fashion to group XML
structured data into clusters, and that this task is scaled in linear time with in-
creasing size of the corpus. It will also be shown that some simple prior knowl-
edge of the data structures is beneficial to the efficient grouping of the XML
documents.

1 Introduction

In many scientific and practical situations, there is often a need to visualise, if possible,
the relationships, e.g. cluster formation, among high-dimensional data items. Kohonen’s
[6] self-organizing map (SOM) is one of the most well known methods to help users to
achieve this goal. It was developed to help identify clusters in multidimensional, say,
p-dimensional datasets. The SOM does this by effectively packing the p-dimensional
dataset onto a q-dimensional display plane, where we assume for simplicity q = 2
throughout this paper. The SOM consists of a discrete display space with N × N grid
points, each grid point is associated with a p-dimensional vector, often referred to in
this paper, as an artificial neuron, or simply a neuron 1. The contents of these vectors
are updated with each presentation of samples from the p-dimensional original data
set. The contents of these vectors encode the relationships (distances) among the p-
dimensional data. The result is that data items that were “similar” or “close” to each
other in the original multidimensional data space are then mapped onto nearby areas of
the 2-dimensional display space. Thus SOM is a topology-preserving map as there is a
topological structure imposed on the nodes in the network. A topological map is simply
a mapping that preserves neighbourhood relations.

Thus, in the SOM, there are N × N grid points, or neurons, each neuron has an
associated p-dimensional vector, often called a codebook vector. This codebook vector
m has the same dimension as the i-th input vector xi. The neurons on the map are
bound together by a topology, which is often either hexagonal or rectangular. In general,
the SOM is trained on a set of examples in an unsupervised fashion as follows:

1 This is called a neuron for historical reasons.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 481–496, 2006.
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For every xi in a training set, obtain the best matching codebook by computing:

c = arg min
j

‖xi − mj‖ (1)

where ‖ · ‖ denotes the Euclidean norm.
After the best matching unit mc is found, the codebook vectors are updated. mc

itself as well as its topological neighbours are moved closer to the input vector in
the input space i.e. the input vector attracts them. The magnitude of the attraction is
governed by a learning rate α and by a neighbourhood function f(Δjc), where Δjc

is the topological distance between mc and mj . As the learning proceeds and new
input vectors are given to the map, the learning rate gradually decreases to zero ac-
cording to a specified learning rate function type. Along with the learning rate, the
neighbourhood radius decreases as well. The codebooks on the map are updated as
follows:

Δmj = α(t)f(Δjc)(mj − xi) (2)

where α is a learning coefficient, and f(.) is a neighbourhood function which controls
the amount by which the weights of the neighbouring neurons are updated. The neigh-

bourhood function can take the form of a Gaussian function f(Δjc)= exp
(
− ‖lj−lc‖2

2σ2

)
,

where σ is the spread, and lc and lj is the location of the winning neuron and the
location of the j-th neuron respectively. Other neighbourhood functions are possible.

Equations (1) and (2) are computed for every input vector in the training set, and for a
set number of iterations. It is shown in [7] that the strength of the SOM is in its ability to
map high dimensional input data onto a low dimensional display space while preserving
the topological relationships among the input data. The SOM is trained unsupervised,
though some supervised approaches to SOM exist [4, 5, 7].

While there are extensions of the SOM algorithm to allow the processing of data
sequences [7], this paper is concerned with more recent developments which extended
the capabilities of the SOM towards the processing of graph structured information
in a causal manner [1], and a more general approach which is capable of capturing
contextual dependencies among the input data [2, 3].

This paper addresses the specific problem of grouping graph structured data into
clusters. The task will be executed in an unsupervised fashion (i.e. during network
training no knowledge is available about how graphs should be clustered) by using
a Self-Organizing Map approach. A collection of XML formatted documents (be-
longing to the INEX competition dataset) will be used to evaluate the approaches.
The performance of these self-organizing methods [2, 3] will be addressed in this
paper.

This paper is organized as follows: an introduction to the processing of graphs using
a SOM for data structures is given in Section 2. The contextual SOM-SD, capable of
encoding more general types of graphs, is given in Section 3. Methods for measuring
the performances of SOM-SD based models are defined in Section 4. Results produced
when engaging the SOM-SD and the CSOM-SD to the clustering task is presented in
Section 5. Finally some conclusions are drawn in Section 6.
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2 The SOM for Structured Data

The SOM for Data Structures (SOM-SD) extends the SOM in its ability to encode di-
rected tree structured graphs [1]. This is accomplished by processing individual nodes
of a graph one at a time rather than by processing a graph as a whole. The network re-
sponse to a given node v is a mapping of v on the display space. This mapping is called
the state of v and contains the coordinates of the winning neuron. An input vector rep-
resentation is created for every node in a graph G by concatenating a numeric data label
lv which may be attached to a node v with the state of each of the node’s immediate
offsprings such that xv = [lv ych[v]], where ch[v] denotes the children of node v, and
ych[v] denotes the states or mappings of the children of v. The dimension of x is made
constant in size by assuming a maximum dimension for l together with a maximum
out-degree of a node. For nodes with less dimensions than the assumed, padding with a
suitable value is applied. Since the initialization of x depends on the availability of all
the children states, this dictates the processing of nodes in an inverse topological order
(i.e. from the leaf nodes towards the root nodes), and hence, this causes information to
flow in a strictly causal manner (from the leaf nodes to the root nodes).

A SOM-SD is trained in a similar fashion to the standard SOM with the difference
that the vector elements l and ych need to be weighted so as to control the influence of
these components to a similarity measure. Equation (1) is altered to become:

c = arg min
j

(‖(xv − mj)Λ‖) (3)

where xv is the input vector for vertex v, mi the i-th codebook, and Λ is a m × m
dimensional diagonal matrix with its diagonal elements λ1,1 · · · λp,p set to μ1, and
λp+1,p+1 · · ·λm,m set to μ2. The constants μ1 and μ2 control the influence of lv and
ych[v] to the Euclidean distance in (3).

The rest of the training algorithm remains the same as that of the standard SOM.
The effect of this extension is that the SOM-SD will map a given set of graphs, and all
sub-graphs onto the same map. The SOM-SD includes the standard SOM and the SOM
for data sequences as special cases.

Since the SOM-SD maintains its ability to cluster input data according to some topol-
ogy, it is found that leaf nodes (which do not feature any outlinks) are mapped in well
distinct areas compared to root nodes. Moreover, since the SOM-SD processes graphs
in a causal manner, the root nodes are a representation of the graph as a whole.

The increased encoding capability of a SOM-SD has a drawback. While a single
vector is sufficient to represent data in a standard SOM, in a SOM-SD the data is rep-
resented by a number of nodes within a graph. Since the SOM-SD maps all nodes, this
implies an increased demand in the display space. In general, a SOM-SD requires larger
maps in order to perform satisfactorily. This is not a major issue since the algorithm
scales linearly in complexity with the size of the map, and the size of the dataset.

This paper will deploy the SOM-SD to cluster XML formatted documents into vari-
ous clusters. The graphs extracted from the XML documents naturally form trees. Loops
or un-rooted structures are not possible. While a SOM-SD is fully capable of encoding
such data, this paper also addresses a further extension to the SOM algorithm which
is capable of encoding more general types of graphs [2, 3]. This is performed in order
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to provide an overview of Self-Organizing map methods which can be deployed to the
task of clustering XML structured documents. In fact, this is a very recent extension
which is applied for the first time to this real world learning problem.

3 The Contextual SOM-SD

With contextual SOM for graphs (CSOM-SD), the network input is formed by addition-
ally concatenating the state of parent nodes and children nodes to an input vector such
that xv = [l ych[v] ypa[v]], where ypa[v] are the states of the parent nodes and ych[v]
are the states of the children nodes. The problem with this definition is that a circular
functional dependency is introduced between the connected vertices v and pa[v], and
so, neither the state for node v nor the state of its parents pa[v] can be computed. One
possibility to compute these states could be to find a joint stable fix point to the equa-
tions involving all the vertices of a structure. This could be performed by initializing
all the states with random values and then updating these initial states using the above
mentioned equations, till a fixed point is reached. Unfortunately, there is no guarantee
that such a fixed point would be reached. Moreover, even if sufficient conditions can
be given over the initial weights of the map to guarantee stability, i.e. the existence of
the fixed point, there is no guarantee that training will remain valid on such sufficient
conditions over the weights.

A (partial) solution to this dilemma has been proposed in [2]. The approach is based
on an K-step approximation of the dynamics described above: Let

yt = h(xt−1
v ), t = 1, . . . , K (4)

where h(·) computes the state of node v by mapping the input xt−1
v , and xt−1

v =
[lv yt−1

ch[v] yi−1
pa[v]]. The algorithm is initialized by setting y0

ch[v] = y0
pa[v] = k, where k =

[−1, −1], an impossible winning coordinate. In other words, the approach iteratively re-
computes the states of every node in a graph K-times. Then, the network input can be
formed by setting xv = [l yK

ch[v] yK
pa[v]]. A suitable value for K could be, for instance,

the maximum length of any path between any two nodes in the graph. Although such a
choice does not guarantee the full processing of contextual information due to possible
latency in the transfer of contextual information from one vertex of the structure to its
neighbors vertices, this value for K seems to be a good tradeoff between contextual
processing and computational cost.

Training is performed similar to the training of SOM-SD with the difference that Λ
is now a n × n matrix, n = dim(x) with λm+1,m+1 · · ·λn,n set to the constant μ3. All
other elements in Λ are the same as defined before.

Note that this approach is a generalization of a CSOM-SD which operates on un-
directed graphs. With un-directed graphs, each node v has a set of neighbors such that
the network input would be xv = [l yK

ne[v]], where ne[v] denotes the state of neighbor-
ing nodes. Accordingly, μ2 = μ3 in Λ in Eq. (3).

The training algorithm of the CSOM-SD can be given as follows:

Step 0. Initialize all y with k, where k = [−1, −1] the impossible output coordinate.
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Step 1. For every v ∈ Gi compute yt = h(xt−1
v ), where xt−1

v = [lv yt−1
ch[v] yt−1

pa[v]].
Repeat this step K times, where K is the maximum path length between the two
most distant nodes in Gi, and Gi is the i-th graph in the training set. Apply this step
to all graphs in the training set.

Step 2. Choose a node v from the training set, initialize xK
v = [l yK

ch[v] yK
pa[v]], and

compute the best matching codebook r by finding the most similar codebook en-
try mr. This can be achieved, e.g., by using the Euclidean distance as follows:

r = arg min
i

‖(xK
v − mi)Λ‖ (5)

Step 3. Update network parameters as follows:

Δmi = α(t)g(Δir)(mi − xK
v ) (6)

where t is the current training iteration, α is a learning rate which gradually de-
creases to zero, g(.) is the neighborhood function depending on Δir which is the
topological distance between neuron i and neuron r. This step is identical to the
traditional SOM updating step shown in Eq. (2). Repeat Step 2 and Step 3 for every
node in the training set.

The algorithm cycles through Steps 1 to 3 until a given number of training iterations is
performed, or when the mapping precision has reached a given prescribed threshold.

Once trained, information can be retrieved efficiently from a CSOM-SD. This is
performed by using a set of data in place of the training set, and by executing Step 0 to
Step 2 on this dataset. This will compute the mapping of all nodes in a dataset. Given
a sample document (represented by a graph) we can now retrieve similar documents by
returning graphs which were mapped near the location on which the known document
was mapped.

4 Performance Measures

It is evident that a simple quantization error is an insufficient indicator of the perfor-
mance of a SOM-SD or a CSOM-SD since such an approach neglects to take into
account the fact that structural information is being mapped. In fact, there are a number
of criteria with which the performance of a SOM-SD or a CSOM-SD can be measured.
These are performance indicators on the clustering performance, the mapping preci-
sion, and the compression ratio. The clustering performance shows how well data are
grouped together on the map, the mapping precision shows how accurately structural
information is encoded in the map, and the compression ratio indicates the degree of
network utilization. In addition, if target labels are available then the network can also
be evaluated on the classification performance, and the retrieval capability.

Retrieval capability (R): This reflects the accuracy of retrieved data from the vari-
ous SOM models. This can be computed quite simply if for each XML docu-
ment dj a target class yj ∈ {t1, . . . , tq} is given. Since each XML document
is represented by a tree, in the following, we will focus our attention just on
the root of the tree. Thus, with rj we will refer to the input vector for SOM,
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SOM-SD or CSOM-SD representing the root of the XML document dj . The R
index is computed as follows: the mapping of every node in the dataset is com-
puted; then for every neuron i the set win(i) of root nodes for which it was a
winner is computed. Let wint(i) = {rj |rj ∈ win(i) and yj = t}, the value

Ri = maxt
|wint(i)|
|win(i)| is computed for neurons with |win(i)| > 0 and the index

R computed as R = 1
W

∑
i,|win(i)|>0 Ri, where W =

∑
i,|win(i)|>0 1 is the total

number of neurons which were activated at least once by a root node.

Classification performance (C): This can be computed as follows:

Cj =
{

1 if yj = t∗r , t∗r = arg maxt |wint(r)|
0 else ,

where r is the index of the best matching codebook for document dj (typically
measured at the root node). Then,

C =
1
N

N∑
j=0

Cj ,

where N is the number of documents (graphs) in the test set. Values of C and R
can range within (0 : 1] where values closer to 1 indicate a better performance.

Clustering performance (P ): A more sophisticated approach is needed to compute
the ability of a SOM-SD or a CSOM-SD to suitably group data on the map. In this
paper the following approach is proposed:

1. Compute the quantities Ri as defined above, and let t∗i = arg maxt |wint(i)|.
2. For any activated neuron compute the quantity:

Pi =

∑|Ni|
j=1

|wint∗
i
(j)|

|win(j)| + |wint(i)|
|win(i)|

|Ni| + 1
=

∑|Ni|
j=1

|wint∗
i
(j)|

|win(j)| + Ri

|Ni| + 1

where Ni = {v|v ∈ ne[i], win(v) 	= ∅}.
3. The overall neural network performance is then given by:

P =
∑

i Pi

W
.

A performance value close to 1 indicates a perfect grouping, while a value closer
to 0 indicates a poor clustering result. Thus, this measure indicates the level of
disorder inside a SOM-SD or CSOM-SD.

Structural mapping precision (e and E): These indices measure how well structural
(e) and contextual structural (E) information are encoded in the map. A suitable
method for computing the structural mapping precision was suggested in [2]. In
this case, just the skeleton of the trees is considered, i.e. the information attached
to vertices is disregarded, and only the topology of the trees is considered. Notice
that these measures do not consider the information about the class to which an
XML document (i.e., a tree) belongs. For this reason, all the neurons of a map
are now considered, since we are also interested in neurons which are winners for
sub-structures. These two measures e and E are respectively computed as follows
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e = 1
N

∑N
i=1,ni �=0

mi

ni
and E = 1

N

∑N
i=1,ni �=0

Mi

ni

where ni is the number of sub-structures mapped at location i, mi is the greatest
number of sub-structures which are identical and are mapped at location i. Simi-
larly, Mi is the greatest number of identical complete trees which are associated
with the sub-structure mapped at location i. N is the total number of neurons ac-
tivated by at least one sub-structure during the mapping process. Hence, e is an
indicator of the quality of the mapping of sub-structures, and E indicates the qual-
ity of the contextual mapping process. Values of e and E close to 1 indicate a very
good mapping (indeed a perfect mapping if the value is 1), and values closer to 0
indicate a poor mapping.

Compression ratio: This is the ratio between the total number of root nodes in the
training/test set, and the number of neurons actually activated by root nodes in the
training/test set. The higher the compression, the fewer the number of neurons are
involved in the mapping process. Extremely high or extremely low compression
ratios can indicate a poor performance. The compression ratio can vary between 0
and N, where N is the number of root nodes in the training/test set.

5 Clustering Results

The corpus (m-db-s-0) considered consists of 9, 640 XML formatted documents
which were made available as part of the INEX Initiative (INitiative for the Evalua-
tion of XML Retrieval), and was obtained via the Web site: http://xmlmining.lip6.fr.
Each of the XML formatted documents describes an individual movie (e.g. the movie
title, list of actors, list of reviewers, etc.). It was built using the IMDB database. Each
document is labelled by one thematic category which represents the genre of the movie
in the original collection and one structure category. There are 11 thematic categories
and 11 possible structure categories which correspond to transformations of the original
data structure. Note that the target labels are used solely for testing purposes, and hence,
are ignored during network training.

A tree structure was extracted for each of the documents in the dataset by following
the general XML structure within the documents. The resulting dataset featured 9, 640
tree structured graphs, one for each XML document in the dataset. The maximum depth
of any graph is 3, the maximum outdegree is 6, 418, and the total number of nodes in
the dataset is 684, 191. Hence, the dataset consists of shallow tree structures which can
be very wide. A three-dimensional data label is attached to every node in the dataset
indicating the XML-tag it represents (more on this below). There were a total of 197
different tags in the dataset.

While for the SOM-SD and CSOM-SD there is no specific need to pre-process this
set of graphs, we decided to apply a pre-processing step in order to reduce the di-
mensionality of the dataset. This allows for a reasonable turn around time for the ex-
periments. Dimension reduction was achieved by consolidating XML tags as follows:
Repeated sequences of tags within the same level of a structure are consolidated. For
example, the structure:
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<BB>
<a></a>
<b></b>
<a></a>
<b></b>
<a></a>
<b></b>

</BB>

is consolidated to

<BB>
<a></a>
<b></b>

</BB>

A justification for taking this step is inspired by operations in regular expressions.
For example, the expression (ab)n can be simulated by repeatedly presenting ab n-
times. Hence, it suffices to process the consolidated structure n times. There were many
trees which exhibited such repeated sequences of tags. The consequence of this pre-
processing step is that the maximum outdegree is reduced to just 32.

A further dimension reduction is achieved by collapsing sequences into a single
node. For example, the sequential structure <A><b><c></c></b></A> can be
collapsed to <A><b&c></b&c></A>, and further to <A&b&c>. Since the deepest
graph is of depth 3, this implies that the longest sequence that can be collapsed is of
length 3. This pre-processing step reduces the total number of nodes in the dataset to
247, 140.

A unique identifier (ID) is associated with each of the 197 XML tags. In order to
account for nodes which represent collapsed sequences, we attach a three dimensional
data label to each node. The first element of the data label gives the ID of the XML
tag it represents, the second element of the data label is the ID number of the first
tag of a collapsed sequence of nodes, and consequently, the third element is the ID
of the tag of the leaf node of a collapsed sequence. For nodes which do not repre-
sent a collapsed structure, the second and third element in the data label will be set to
zero.

The resulting dataset consists of 4, 820 graphs containing a total of 124, 360 nodes
(training set), and 4,811 graphs containing a total of 122, 780 nodes (test set). The
training set was analysed for its statistical properties, results are illustrated in Figure 1.
It is observed that the training set is unbalanced. For example, the table on the left
of Figure 1 shows that there are only 172 samples of the pattern instance denoted
by “4” but over 700 instances of patterns from the instance denoted by “3”. Also,
the 3-D plot in Figure 1 shows that the distribution of outdegrees can vary greatly.
For example, there is only one instance in the pattern class denoted by “8” which
has an outdegree of 10 while there are over 270 instances for the same pattern class
with outdegree 5. There are also a number of pattern classes which are similar in fea-
tures such as class “10” and class “11” which are of similar size and are of similar
structure.

There are 2, 872 unique sub-structures in the training set. This is an important sta-
tistical figure since it gives an indication to how much more information is provided
to a SOM-SD when compared to the flat vectors used for the SOM. And hence, the
larger the number of unique sub-structures in the training set, the greater the potential
diversification in the mapping of the data will be. Similarly, there are 96, 107 unique
nodes in different contextual configurations in the training set. This shows that the
CSOM-SD is provided with a greater set of diverse features in the training set, and
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Fig. 1. Properties of the training set: The table (left) shows the number of graphs in each of the 11
classes. The plot (right) shows the distribution of outdegrees in the dataset. Shown are the number
of graphs (z-axis) which have a given outdegree (y-axis) and belong to a given class (x-axis).

hence, may be capable to diversify in the mapping of the data even further. Thus, this
dataset provides a challenging learning problem on which various SOM models will be
tested.

All SOMs illustrated in this section used a hexagonal topology, and a Gaussian
neighborhood function. For the SOM-SD and the CSOM-SD, when generating the in-
put vectors xi for nodes with less than the maximum outdegree, padding was performed
using the impossible coordinate [−1, −1].

The standard SOM is trained on 4, 820 data vectors, each one represents an XML
document. The i-th element in the data vector represents the frequency of the i-th
XML tag within a document. Thus, the input vectors for the SOM are 197 dimen-
sional containing the complete set of information about the XML tags in a document
but do not contain any information about the topological structure between the XML
tags.

Thus, the SOM is trained on relatively few high-dimensional data vectors while the
(C)SOM-SD is being trained on a large number of nodes which are represented by a rel-
atively small size vectors. For the SOM we chose 64×48 = 3, 072 as the size of the net-
work. The total number of network parameters for the SOM is 3, 072×197 = 605, 184.
Since the codebook dimensions for the SOM-SD is 3 + 32 × 2 = 67, this implies that
a SOM-SD needs to feature at least 9, 033 codebooks to allow a fair comparison. Ac-
cordingly, the CSOM-SD should feature at least 8, 771 neurons. However, since the
SOM-SD (and to an even greater extent the CSOM-SD) are to encode a larger feature
set which includes causal (contextual) information about the data, this implies that the
SOM-SD (CSOM-SD) will potentially diversify the mapping of the data to a greater
extent than a SOM would do. Hence, this would justify the choice of even larger net-
works for the SOM-SD and CSOM-SD respectively for the comparisons. However, we
chose to use the network sizes as indicated in Table 1 as these suffice to illustrate the
principal properties of the models.

A number of SOMs, SOM-SDs, and CSOM-SDs were trained by varying the train-
ing parameters, and initial network conditions. We used the classification measure C
as a general benchmark on which to optimize the performance of the various models.
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Table 1. Network parameters used for the training procedure

size # iterations α(0) r(0) μ1 μ2 μ3

SOM 64 × 48 32 1.0 4 1.0 – –
SOM-SD 110 × 81 62 1.0 38 0.11 0.89 –
CSOM-SD 110 × 81 12 0.7 15 0.11 0.88 0.01 2

A total of 56 experiments were executed for each of the SOM models, and every
experiment was repeated 10 times using a different random initialization of the map
as a starting point. The experiments varied the following training parameters: number
of training iterations i, initial neighborhood radius r(0), initial learning rate α(0), and
the weight values μ (in this order). The set of training parameters which maximised
the classification performance of the three models is shown in Table 1. It is observed
that the SOM-SD required more training iterations and a larger initial neighborhood
radius to achieve optimum classification performance (on the training set). It was also
observed that the classification performance of the CSOM-SD improved with smaller
values for μ3 reaching an optimum for μ3 = 0.0. However, setting μ3 to zero would
reduce the CSOM-SD to a SOM-SD, and hence, would be an unsuitable choice for the
comparisons. Further details regarding this observation are given below.

The performances of the three SOM models are illustrated in Table 2. The perfor-
mance indices are those as defined in Section 4. From Table 2 it can be seen that a
standard SOM is able to classify over 90% of patterns in the training set correctly
despite of no information about the underlying causal or contextual configuration of
XML tags is provided to the training algorithm. However, it was found that the SOM
generalizes poorly. In comparison, the SOM-SD improved the classification rate by a
noticeable amount, and was able to generalize over unseen data very well. As is seen
from the compression ratio Z , the performance increase of the SOM-SD comes despite
a doubling of the compression ratio. This is a clear evidence that causal information
about the order of XML tags allows to a.) diversify the mapping of nodes to a consid-
erably larger extend, and b.) the diversification in the mappings can result in an overall

Table 2. Best results obtained during the experimentation with maps of size 64 × 48 (SOM), and
for maps of size 110 × 81 (SOM-SD and CSOM-SD)

train set test set
C R P e E Z C R P e E Z

SOM 90.5% 0.90 0.73 1.0 1.0 2.45 76.5% 0.92 0.73 1.0 1.0 2.45
SOM-SD 92.5% 0.92 0.78 0.77 0.50 5.13 87.3% 0.93 0.79 0.76 0.50 4.9
CSOM-SD 83.9% 0.87 0.73 0.91 0.30 8.53 78.6% 0.88 0.71 0.90 0.37 8.54

improvement of the classification or clustering performances. In contrast, the inclusion
of contextual information did not help to improve on the classification performance as it

2 Smallest non-zero value tried. Setting μ3 = 0.0 resulted in a better classification performance
but would reduce the CSOM-SD to a SOM-SD.
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is seen from the results obtained from the CSOM-SD. It is found that contextual infor-
mation helped to diversify the mapping of nodes by almost double when compared to
the SOM-SD. This is indicated by the larger compression ratio. Thus, it is evident that
a correct classification of the graphs in the dataset is independent to contextual infor-
mation about the XML tags within the original documents. Paired with the greater data
compression which is the result of a greater diversification in the mapping of nodes,
this produced a relative overall reduction in classification performance for the CSOM-
SD, and explains the observation that the performance optimum of the CSOM-SD is at
μ3 = 0.

Fig. 2. The mapping of the training vectors on a standard SOM

In addition, it is observed that a CSOM-SD performs worse on the performance
measure E than a SOM-SD. This is a result which arose out of the fact that the experi-
ments were to optimize the classification performance C. It was found that a CSOM-SD
improves on C when using μ3 → 0. However, setting μ3 = 0 would reduce the CSOM-
SD to a SOM-SD and would have denied us from making a comparison between the
models. Instead, we chose a small value for μ3 so as to allow such comparisons, and
still produce reasonable classification performances. Using a very small μ3 reduces the
impact of contextual information to the training algorithm. Paired with the increased
compression ratio in the mapping of root nodes, this resulted in a relative decrease in
the performance on E. Note that the standard SOM performed at e = E = 1. This



492 M. Hagenbuchner et al.

Fig. 3. The mapping of root nodes (training set) on the SOM-SD

is due to the fact that a SOM handles the simplest type of data structures (viz. single
nodes). These render all structures in the dataset identical, resulting in the observed
performance values.

A closer look at the mapping of (training) data is made in the standard SOM
Figure 2. The hexagons in Figure 2 refer to the neurons on the map. The brightness
of the grid intersection represents the number of training data which are assigned
to the grid point due to their closeness in the original input space. Thus by exam-
ining the brightness in the grid, it is possible to gain an appreciation of the way
the given training dataset can be grouped together, according to their closeness in
the original input space. Every neuron is also filled in with a pattern indicating the
class that most frequently activated the neuron. There are 11 different fill in patterns
for the 11 possible classes. Neurons which are not filled in are not activated by any
vector in the training set. It can be observed that a number of well distinct clusters
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Fig. 4. The mapping of root nodes (training set) on the CSOM-SD

have formed on the map, most of which correspond very nicely with the target la-
bel that is associated with the training data. Most clusters are separated from each
other by an area of neurons which were not activated. This may indicate a good
result since the presence of such border regions should allow for a good general-
ization performance; a statement which could not be confirmed when evaluating the
test set.

In comparison, the mapping of root nodes in the training set on a trained SOM-
SD is shown in Figure 3. Neurons which are not filled in are either not activated by
a root node, or are activated by a node other than the root node. It can be observed
in Figure 3 that large sections of the map are not activated by any root node. This is
due to the fact that root nodes are a minority in the dataset. Only 4, 824 nodes out
of the total 124, 468 nodes in the training set are root nodes. Hence, only a relatively
small portion of the map is activated by root nodes. It is also observed that graphs
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Table 3. Confusion table as produced by the best SOM when using the training set

Label 1 10 11 2 3 4 5 6 7 8 9 Perf.

1 598 0 0 0 0 0 0 0 0 0 0 100.0%
10 0 339 33 0 0 0 0 14 0 0 0 87.8%
11 0 69 350 0 0 0 0 29 0 0 0 78.1%
2 0 0 0 362 124 0 0 0 0 0 0 74.4%
3 0 0 0 29 672 0 0 0 0 0 0 95.8%
4 2 0 0 0 0 87 83 0 0 0 0 50.5%
5 0 0 0 0 0 16 419 0 0 0 0 96.3%
6 1 47 12 0 0 0 0 171 0 0 0 74.0%
7 0 0 0 0 0 0 0 0 260 0 1 99.6%
8 0 0 0 0 0 0 0 0 0 769 0 100.0%
9 0 0 0 0 0 0 0 0 0 0 333 100.0%

belonging to different classes form clear clusters some of which are very small in size.
This observation confirms the experimental findings which show that the SOM-SD will
be able to generalize well.

Table 4. Confusion table as produced by the best SOM-SD when using the training set

Label 1 10 11 2 3 4 5 6 7 8 9 Perf.

1 590 1 0 3 4 0 0 0 0 0 0 98.66%
10 0 384 0 0 0 0 0 0 0 0 2 99.48%
11 0 0 363 0 0 0 0 59 0 25 1 81.03%
2 3 0 0 440 16 8 19 0 0 0 0 90.54%
3 4 0 0 10 686 1 0 0 0 0 0 97.86%
4 1 0 0 86 5 65 15 0 0 0 0 37.79%
5 0 0 0 4 0 2 429 0 0 0 0 98.62%
6 0 0 63 0 0 0 0 150 0 18 0 64.94%
7 0 0 0 0 0 0 0 0 257 4 0 98.47%
8 0 0 5 0 0 0 0 3 0 761 0 98.96%
9 0 0 0 0 0 0 0 0 0 0 333 100.0%

Figure 4 gives the mapping of the root nodes as produced by the CSOM-SD. Again,
it is found that the largest portion of the map is filled in by neurons which are either not
activated or are activated by nodes other than the labelled root nodes. Clear clusters are
formed which are somewhat smaller in size when compared to the SOM-SD case. This
illustrates quite nicely that the CSOM-SD is compressing the “root” data considerably
more strongly than the SOM-SD since contextual information is also encoded which
requires additional room in the map. Nevertheless, the observation confirms that the
CSOM-SD will also be able to generalize well even though some of the performance
indices may be worse than when compared to a SOM-SD of the same size. This can be
expected since the CSOM-SD compresses the “root” data more strongly.

A more detailed look at the classification of the data is made in Table 3, Table 4,
and Table 5 which give the confusion matrices as produced by the SOM, SOM-SD, and
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Table 5. Confusion table as produced by the best CSOM-SD when using the training set

Label 1 10 11 2 3 4 5 6 7 8 9 Perf.

1 592 1 0 0 5 0 0 0 0 0 0 99.00%
10 0 355 0 0 0 0 0 0 0 0 31 91.97%
11 0 1 274 0 0 0 0 17 0 156 0 61.16%

2 0 0 0 425 17 16 28 0 0 0 0 87.45%
3 15 0 0 7 679 0 0 0 0 0 0 96.86%
4 0 0 0 78 10 68 16 0 0 0 0 39.53%
5 0 0 0 8 3 3 421 0 0 0 0 96.78%
6 0 2 46 0 0 0 0 89 0 94 0 38.53%
7 0 0 0 0 0 0 0 0 261 0 0 100.0%
8 0 0 103 0 0 0 0 2 0 664 0 86.35%
9 0 0 0 0 0 0 0 0 0 0 333 100.0%

the CSOM-SD respectively. It is seen that all three models perform best on classes
which are relatively large in size (compare with Figure 1) The poorest classifica-
tions are observed for the smallest classes. This is particularly true for the classes
labelled 4 and 6, which in addition of being the smallest classes in the dataset, also
share features that are similar to the classes 2 and 11. This shows that the perfor-
mance of all three models is affected by unbalances in the feature space presented in the
training set.

The experiments presented in this paper were executed on 2GHz Intel based CPUs.
Training times varied from 2 − 12 hours depending on the SOM model and training
parameters used. Once trained, data retrieval generally took only a few minutes.

6 Conclusions

The clustering of graphs and sub-graphs can be a hard problem. This paper demon-
strated that the clustering task of general types of graphs can be performed in linear
time by using a neural network approach based on Self-Organizing Maps. In addition,
it was shown that SOM-SD based networks can produce good performances even if the
map is considerably smaller than the size of the training set. Using larger maps will
generally allow to improve the performance further though this was not illustrated in
this paper.

Specifically, it was shown that the given learning problem depends on the availability
of causal information about the XML tags within the original document in order to
produce a good grouping or classification of the data. The incorporation of contextual
information did not help to improve on the results.

The training set used in this paper featured a wide variety of tree structured graphs.
We found that most graphs are relatively small in size, only few graphs were either
very wide or featured many nodes. This creates imbalances in features represented in a
training set which is known to negatively impact the performance of a neural network.
Similarly it is true when considering the way we generated data labels for the nodes.
An improvement of these aspects (i.e. balancing the features in the training set, using
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unique labels which are equiv-distant to each other) should help to improve the net-
work performances. An investigation into the effects of these aspects is left as a future
task.

Furthermore, it was shown that the (C)SOM-SD models map graph structures onto a
finite regular grid in a topology preserving manner. This implies that similar structures
are mapped onto nearby areas. As a consequence, these SOM models should be suitable
for inexact graph matching tasks. Such applications are considered as a future task.
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Abstract. This paper reports on the activities of the INEX 2005 Multi-
media track. The track was successful in realizing its objective to provide
a pilot evaluation platform for the evaluation of retrieval strategies for
XML-based multimedia documents. In this first exploratory year the fo-
cus of the evaluation experiment was to test approaches for the retrieval
of XML fragments using a combination of content-based text and image
retrieval techniques. The track is set to continue at INEX 2006.

1 Challenge and Objectives

The main objective of the INEX 2005 multimedia track was to provide a pi-
lot evaluation platform for structured document retrieval systems which are not
limited to textual content, but combine multiple media types. Many, real-life
structured document collections today contain a range of media, such as text,
image, speech, and video. Incorporating different media types within the re-
trieval process and producing meaningful rankings of multimedia documents
and components is far from trivial. The goal of the multimedia track at INEX
2005 was to investigate this problem from a new perspective, using the structure
of documents as the semantic/logical backbone for the retrieval of multimedia
document fragments. In this first year, the track resulted in the construction of
a pilot evaluation platform for the retrieval of multimedia structured document
fragments. The methodology used in the construction of the test collection was
built on established methods used at TREC [1].

The task set for the multimedia track was to retrieve relevant document frag-
ments based on an information need with a structured multimedia character.
The challenge for a structured document retrieval system in this case is then
to combine the relevance of the different media types into a single (meaningful)
ranking that can be presented to the user. The INEX multimedia track differs
from other approaches in multimedia information retrieval, like TRECVID [2]
and ImageCLEF [3], in the sense that it focuses on the use of document structure
to estimate, relate, and combine the relevance of different multimedia fragments.
The focus for 2005 was on the combination of text and image retrieval, where a
strict interpretation of the structural constraints within the specified information
need was adopted.

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 497–510, 2006.
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1.1 Participants

Eight groups participated in the first year of this track. These are summarised
in Table 1.

Table 1. Participants of the multimedia track

ID Organisation Created Assessed Submitted
topics topics runs

utwente Cirquid Project (CWI and U. of Twente) 6 3 5
qmul Queen Mary University of London 5 3 1
utrecht Utrecht University 4 3 5
rmit RMIT University 3 3 5
qutau Queensland University of Technology 3 3 5
ugrenoble University of Grenoble (CLIPS-IMAG) 0 2 0
uberkeley University of California, Berkeley 0 2 0

1.2 Setting Up the Multimedia Track

A step-by-step outline of the activities involved in setting up the multimedia
track is given below.

– Acquisition of the Lonely Planet WorldGuide XML collection [4] .
One of the first tasks was to acquire a suitable XML collection that was easily
accessible and contained integrated multimedia objects. Such a collection was
donated by the Lonely Planet organization in the form of the WorldGuide
XML collection.

– Extension of the NEXI query language. The original NEXI query lan-
guage [5] supported only text-based information access. For the multimedia
track, it was necessary to allow for searching images as well as text. There-
fore, a small extension to NEXI was defined.

– Baseline system for topic formulation. Both a text-based and an image-
based retrieval system was provided for participants to support the topic
creation process.

– Topic creation procedure and selection. A topic creation procedure
was set up, similar to that used by the INEX ad-hoc track, but extended to
address the additional requirements of the multimedia track. For example,
in addition to searching for relevant text fragments to a candidate topic,
participants were asked to carry out preliminary searches for relevant images.
Topic creation resulted in a pool of 25 topics, which now form part of the
INEX multimedia test collection. These topics were then used to evaluate
the participants’ retrieval systems.

– Assessment procedure. Binary relevancy judgments and the yellow-
marker design for obtaining relevance assessments were employed in the
track. Assessments were collected using the XRAI assessment tool [6], which
was adapted by Benjamin Piwowarski to fit the track’s assessment procedure
(which is different from that employed by the ad-hoc track). As a result of the
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employed binary relevance, the two-step assessment procedure used in the
ad-hoc track was replaced with a single step: Assessors were asked to mark
those multimedia fragments relevant that satisfied all requirements of the
information need. Based on the SSCAS interpretation of a topic’s structural
constraints, both support elements, i.e. where to look, and target elements,
i.e. what to return, had to be strictly matched by relevant fragments. All
eight participants took part in the assessments. Two topics, topic 18 and 20,
remained un-assessed.

– Evaluation of results. In total, twenty-five runs were submitted by five
participants (qmul, qutau, rmit, utrecht and utwente). Using the TREC
evaluation tool, trec eval [1], the results of several standard measures used
in TREC were reported as indications of retrieval performance.

We detail each of the above steps in separate sections in the remainder of this
paper.

2 Lonely Planet WorldGuide XML Document Collection

The corpus used for the INEX 2005 multimedia track was based on the Lonely
Planet WorldGuide collection, made available by the Lonely Planet organi-
zation. The collection consists of 462 XML documents, each providing in-
formation about holiday or travel destinations. The most likely users of the
collection are hence travelers who are interested in researching the locations
of their next holiday or business trip. The collection can be viewed online
at: http://www.lonelyplanet.com/worldguide/. The collection contains in-
formation about countries, regions and major cities. For each destination an
introduction is given, complemented with information about transport, culture,
major events, facts, and an image gallery that provides an impression of the local
scenery. In Table 2, some additional statistics for the LonelyPlanet document
collection are given.

Table 2. Lonely Planet WorldGuide collection statistics

Total number of XML documents 462
Total number of images 2633
Average number of images per file 6.7
Average depth of XML structure 4.73
Maximum depth of XML structure 8
Average number of XML nodes per document 440

3 Topic Creation

We first provide two example topics to introduce the requirements and the chosen
approach for combining text and image components within a user request. The
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main consideration is the inclusion of content-based image retrieval into the
specification of an information request using the NEXI query language1 [5].

In its first year, the multimedia track focused on the use of Content-And-
Structure (CAS) topics as these allow for the explicit representation of the mul-
timedia character of an information request. We refer to these as NEXI-CAS
queries.

3.1 Examples

Example 1

Information need: Find images depicting scuba diving for destinations
with a tropical climate and with activities that discuss exploring the beautiful
underwater nature by diving.
Information request:

//destination[ about(.//weather,tropical climate)
and about(.//activities, beautiful "underwater nature" diving)]

//images//image[about(., scuba diving)]

The information need of Example 1 contains both textual and image components.
E.g. about(.//weather,tropical climate) specifies the condition requesting
information about a tropical climate that is to be found within the XML ele-
ment weather, which is a descendant of a destination element. Furthermore,
requested image elements should depict scuba diving scenes.

Although the target elements of the above example are images, so far, simple
textual retrieval approaches may have been sufficient to produce the required
output, e.g. by searching on image captions. However, a combination of text and
image retrieval techniques was encouraged within the track with the aim that
these may in fact produce better results. An example of a query that combines
both these aspects is shown in Example 2.

Example 2

Information need: Find images depicting scuba diving, like in
BN5970 6.jpg, for destinations with a tropical climate and with activities
that discuss exploring the beautiful underwater nature by diving.
Information request:

//destination[about(.//weather,tropical climate)
and about(.//activities, beautiful "underwater nature" diving)]

//images//image[about(., scuba diving src:/image/BN5970_6.jpg)]

The extension to the information need in Example 2, where a sample image is
given by the user, enforces the inclusion of content-based image retrieval tech-
niques into the retrieval process. To specify the corresponding information re-
quest in NEXI, a small extension to the query language was required, which is
discussed next.
1 NEXI is the XML query language used in INEX, which has been specifically devel-

oped to emphasize the content-oriented access to XML documents.
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3.2 Multimedia Extension to NEXI

Two possible options were open for extending NEXI with image querying capa-
bilities: 1.) introducing a new depict clause that takes an example image as one
of its parameters, or 2.) extending the already existing about clause for image
as well as text querying. The latter approach was chosen. By expressing both
the content and image components of the information need within the same
about clause of NEXI, we are effectively overloading its meaning, leaving it to
the retrieval system to decide if a text or image search (or both) is required.
The reason for doing so was to emphasize the multimedia nature of the track.
By adopting this overloaded about clause, we can specify query constraints for
a document fragment (which may be pure text, image, or a combination of
the two media types) using textual descriptions (e.g. about(//image, scuba
diving) or about(//destination, scuba diving)) or using example images
(e.g. about(//image, src:/image/BN5970 6.jpg) or about(//destination,
src:/image/BN5970 6.jpg)) or any combinations of the above, e.g. as shown
in Example 2.

3.3 Topic Format and Topic Development Procedure

Topic Format. The topic format for the multimedia track consists of the fol-
lowing fields: description, castitle, and narrative. The following information is
contained in each of these fields:

– <description> A brief description of the information need, specifying any
structural, textual, and visual requirements/composition on the content. The
description must be precise, concise, and informative. It must contain the
same terms and the same structural requirements that appear in the castitle,
albeit expressed in natural language.

– <castitle> A valid NEXI expression based on the Lonely Planet document
collection that contains at least one about clause containing at least one
image component. The expression is of the form //A[B] or //A[B]//C[D].

– <narrative> A detailed explanation of the information need and the de-
scription of what makes and element relevant or not. The narrative should
explain not only what information is being sought, but also the context and
motivation of the information need, i.e. why the information is being sought
and what purpose it may serve.

Topic Development Guidelines. Each participating group was requested to sub-
mit 3 CAS topics following these steps.

Step 1: Initial topic statement. Creation of a one or two sentence descrip-
tion of the information being sought. This had to be a simple description of
the information need without regard to retrieval system capabilities or docu-
ment collection peculiarities. The context and motivation of the information
need, i.e. why the information is being sought, also had to be recorded.
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Step 2: Exploration phase. In this step the initial topic statement was
used to explore the collection and obtain an estimate of the number of rele-
vant elements. This was necessary to evaluate whether a topic can be judged
consistently and whether enough but not too many relevant answers exist
for it within the collection. For this purpose two search engines were made
available to participants: a text and an image retrieval system.
Step 2a: Assess the top 25 text fragments. Participants were asked to
judge the relevance of the top 25 retrieved text fragments. Each result had
to be judged on its own merits. A search was to be abandoned if there were
fewer than 2 or more than 20 relevant text fragments in the top 25 results.
Step 2b: Assess top 25 images. Since most participants did not have an
off-the-shelf system available for the multimedia track, we have chosen to
carry out a separate scan for the relevance of the image component. Here,
participants had to assess the top 25 returned images. As with text, each
result had to be judged on its own merits. A minimum of 2 and a maximum
of 20 relevant images were required within the top 25 results.
Step 2c: Inspect document matching. To assure that the document
collection had a reasonable chance of completely fulfilling the text and image-
based constraints of an information need, a check at document level was
needed. Participants were asked to count the number of documents that
satisfied both the textual and image conditions. A candidate topic was to be
rejected if less than 2 documents were found in the top 25 results for both
components.
Step 3: Topic formulation. During this step, participants finalised the
topic description, castitle, and narrative.
Step 4: Topic submission. Topics were submitted using the on-line Can-
didate Topic Submission Form on the INEX 2005 website.

Topic Pool. Five of the participating groups submitted a total of 25 topics.
Example 3 shows one of these submitted topics. The target elements of this
query are destination elements, where a relevant fragment needs to fulfill the
various conditions formulated using both textual and visual requirements.

Example 3

<?xml version="1.0" encoding="ISO-8859-1"?>
<inex_topic topic_id="13" inex_track="MM">
<castitle>//destination[about(., city river)]//images//image[

about(., river city) and about(., src:/images/BN6288_22.jpg)]
</castitle>
<description>Find images depicting a city with a river, like in

BN6288_22.jpg</description>
<narrative>Brisbane is a beautiful city as there is a river flowing

through the city. We want to find other cities that also have a
river so that we can create a tour of river cities. </narrative>

</inex_topic>
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4 Relevance Assessments

The definition of relevance used for the assessments was based on the definition
employed in the INEX ad-hoc track with the exception that exhaustivity was
measured only on a binary scale. In addition, reflecting the SSCAS task, an
XML element was only considered relevant if it strictly matched the structural
conditions specified within the query, i.e. only target elements could be relevant
and only if they were contained in an XML document that satisfied all the
query’s containment constraints.

Therefore, a given multimedia fragment was said to be relevant if it discussed
(or depicted) the topic of request to any degree and if it strictly adhered to the
structural conditions requested by the user. Similarly to the ad-hoc track, the
assessment procedure followed the highlighting approach. However, given the
binary nature of relevance (exhaustivity), the assessment procedure for the mul-
timedia track consisted only of a single pass. During this single assessment phase,

Fig. 1. Snapshot of the XRAI interface
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Table 3. Details of the obtained assessments per topic

Topic Relevant Elements Topic Relevant Elements
1 29 14 44
2 75 15 18
3 13 16 40
4 13 17 10
5 4 18 -
6 8 19 20
7 10 20 -
8 5 21 25
9 31 22 21
10 50 23 4
11 2 24 77
12 11 25 2
13 64

assessors were requested to highlight multimedia fragments that contained only
relevant content, i.e. contained no (or only minimal) non-relevant information.
In the case of textual content, only relevant text fragments, e.g. words or sen-
tences, were to be highlighted. In the case of images, since it was not possible
to highlight only a part of an image, the whole image was highlighted if it con-
tained relevant content (regardless of how much of the image may have been
non-relevant).

Relevance assessments were carried out using the XRAI assessment tool, de-
veloped by Benjamin Piwowarski. Figure 1 shows a snapshot of the interface,
where fragments from the Lonely Planet collection are marked relevant (high-
lighted).

In total, eight groups took part in the assessments. As a result, 23 of the 25
topics were assessed. These then provided the basis for the evaluation. Table 3
provides a summary of the obtained assessments. Topics 8, 21, 22, and 24 are
shown in italic, because the assessments did not match the castitle, and the topic
description. These topics were therefore removed from the official evaluation.

In this report we only present results based on the official topic set of 19
topics.

5 Evaluation of Retrieval Performance

In this section, we discuss the results of the evaluation of the submitted runs. We
report interpolated recall-precision averages and precision at fixed element cutoff
levels for the best scoring run of each participant. In addition, mean average
precision (MAP) scores and results of the binary preference (bpref) measure
are given as overall performance indicator. All results were calculated using the
TREC evaluation scripts, implemented in trec eval version 7.3.
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MAP, Precision@10 and bpref. Table 4 shows results for the best performing
run of each participating group (selected based on MAP score). In total 19 topics
were used for the official evaluation, however utrecht did not produce a ranking
for two topics.

When comparing the number of retrieved elements (Ret.) with the number of
relevant elements (Rel.) and the number of relevant and retrieved elements (Rel.
& ret.), rmit was particularly successful in retrieving 202 relevant elements out
of only 784 retrieved elements. However, the most number of relevant elements
were retrieved by qutau: 303 out of a total of 448 relevant elements.

Table 4. MAP, Precision@10 and bpref

Participant qmul rmit qutau utrecht utwente
Run vsm aggr

06
alpha-0.3 text only annotation automatic

noimg lm
05

Topics 19 19 19 17 19
Ret. 4750 784 3366 1112 4750
Rel. 448 448 448 390 448
Rel. & ret. 83 202 303 216 282
MAP 0.0412 0.2779 0.2711 0.2392 0.2751
Precision@10 0.0368 0.3105 0.2842 0.2706 0.2789
bpref 0.2388 0.4455 0.6516 0.5113 0.6272

MAP reports the average of the precision values after each retrieved relevant
element. Based on the statistics of Table 4, it can be concluded that MAP favors
rmit, closely followed by utwente and qutau.

Precision@10 reflects on the ability of a system to retrieve relevant elements
in the top 10 positions of the ranking. For this measure, rmit has best per-
formance, followed by qutau and utwente. This suggests that although qutau
shows better performance at the top of the ranking, utwente achieves better
overall performance.

Bpref has been shown to be a highly stable measure when relevance judgments
are sparse [7]. This is therefore especially useful here given the size of the assess-
ment pool. Intuitively, bpref measures the average number of times non-relevant
materialappears before relevantmaterial.Here thedifferences between the runs are
substantial: qutau and utwente are the only ones with a score of over 60%, while
the others follow at some distance. Interestingly, however, bpref leads to a much
improved performance score for qmul, compared with MAP and Precision@10.

More detailed information on the overall performances for all other runs sub-
mitted by participants can be found in Appendix A, or on the website [8].

Interpolated Recall-Precision Averages. Figure 2 shows the interpolated preci-
sion scores calculated at 11 standard recall points for the best performing run
of each participating group (selected based on MAP score). Most curves are
closely correlated. Two observations may be of interest: 1.) the best rmit run
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Fig. 3. Precision at element cutoff levels

outperforms all others for mid-recall levels (0.1 – 0.6), and 2.) the best run for
utrecht achieves the highest precision of all for low recall levels (<0.1).

Precision at Element Cutoff Levels. Figure 3 plots scores for precision at various
element cutoff levels in the range of 1 – 250. Precision at element cutoff is
sensitive of the order in which relevant elements are returned. With the exception
of the qmul run, all runs show an almost equal performance.

MAP per Topic. The analysis presented here allows us to investigate the per-
formance of the different strategies per topic. In addition, it reveals if there are
topics, which could not be answered, or which require specific approaches.
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In Figure 4, MAP per topic is plotted for the 19 topics. It shows that retrieval
performance is poor for all strategies on topics 1, 9, 12, 15, and 27. Looking at
Table 3, it becomes clear that the assessment pools for these topics are relatively
small. For example, in the case of topic 25 none of the systems were able to find
any of the 2 relevant elements. On the other hand, most systems were more
successful on topic 11, which also has only 2 relevant elements. Obviously, topics
with sparse relevant elements will have a larger impact on the overall evaluation.
It would hence make sense to withdraw such topics from the evaluation.
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Fig. 4. Mean average precision per topic

Interesting to note that each participant seems to stand out on a number of
topics, while performance on the other topics is about average. Furthermore,
overall performance for most systems on topics 2 – 7 and 23 seems to be signifi-
cantly higher than for topics 9 –19. A more detailed analysis on the characteris-
tics of the topics is needed to examine what causes this difference in performance.

6 Discussions at Dagstuhl

At the workshop in Dagstuhl a lively discussion was held, during which the issue
was raised that more expertise was needed on image retrieval approaches. It was
a common problem that most of the participants did not have an ‘off-the-shelf’
image retrieval system available and ended up with a poor performing image
retrieval strategy. Consequently, their multimedia information retrieval approach
suffered, which explains why at current the multimedia-based approaches did not
do convincingly better than a plain text-based search.

One of objectives for next year, is to arrange a state-of-the-art image retrieval
system that can be used by participants. Ideally, image segmentation and object
recognition should be supported by this system.
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Another initiative, forthcoming from this discussion is to either extend the
Lonely Planet collection with a larger collection of images2, or to switch to the
Wikipedia collection, which is also enriched with a large collection of images.
This collection will also be used by the INEX 2006 ad-hoc track [9].

7 Conclusions and Future Work

A detailed analysis of the results for the multimedia track remains to be done.
However, at this point we can conclude that, despite the exploratory nature
of the first year, many achievements have been realized. We have successfully
acquired and exploited the Lonely Planet WorldGuide, which proved to be a very
useful starting point to flash out initial problems both in the retrieval approaches
and the evaluation methodology. With a minimum extension, we successfully
adopted the NEXI query language for multimedia structured document retrieval.
A topic pool of 23 topics has been created and assessed. Five participating groups
succeeded in building a multimedia retrieval system for structured documents
and submitted a total of 25 runs for the evaluation.

A solid basis has been created to run the multimedia track again next year. We
will have to reconsider many of the choices made, such as for instance the topic
creation procedure and the evaluation metrics, which are currently based on the
standard TREC methodology (where the retrieval of near-misses is currently not
considered).

Acknowledgments

We would like to thank all participants for their efforts in making the first year
of the multimedia track a success. In particular, we are grateful for the support
we received from Benjamin Piwowarski, who provided the relevance assessments
tool. We would like to thank Andrew Trotman, among others, who have helped
with the implementation of the NEXI extension. Finally, we would like to express
our gratitude towards the Lonely Planet organization for providing us with this
interesting XML collection.

References

1. Voorhees, E., Harman, D., eds.: TREC - Experiment and Evaluation in Information
Retrieval, MIT Press (2005)

2. Smeaton, A., Kraaij, W., Over, P.: The TREC Video Retrieval Evaluation
(TRECVID): A case study and status report. In: Coupling approaches, coupling me-
dia and coupling languages for information retrieval - RIAO 2004, Vaucluse, France
(2004) 25 – 37

2 In this case, we will try to obtain access to the stock photography library of the
Lonely Planet, which contains a large amount of images associated with a destina-
tion. See for more information: http://www.lonelyplanetimages.com/ .



INEX 2005 Multimedia Track 509

3. Clough, P., Mueller, H., Sanderson, M.: The CLEF Cross Language Image Retrieval
Track (ImageCLEF) 2004. In: Fifth Workshop of the Cross-Language Evaluation
Forum (CLEF 2004). Lecture Notes in Computer Science, Springer (2005)

4. Planet, L.: (World guide - http://www.lonelyplanet.com/worldguide/)
5. Trotman, A., Sigurbjornsson, B.: Narrowed Extended XPath I (NEXI). In: Advances

in XML Information Retrieval. Volume 3493. Springer, Schloss Dagstuhl, Germany
(2005) 16 – 40

6. Lalmas, M., Piwowarski, B.: INEX 2005 relevance assessment guide. In: INEX 2005
Workshop Pre-proceedings. (2005) 391 – 401

7. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In:
SIGIR 2004: Proceedings of the 27th annual international ACM SIGIR conference
on Research and Development in Information Retrieval, New York, NY, USA, ACM
Press (2004) 25 – 32

8. van Zwol, R.: (INEX 2005 Multimedia Track Evaluation Results -
http;//contentlab.cs.uu.nl/∼roelof/mmtrack/)

9. INEX: (INitiative for the evaluation of XML Retrieval 2006 -
http://inex.is.informatik.uni-duisburg.de/2006/)

A Performance Results

In this appendix the performance of the additional runs that were submitted
by participants are reported. Performance results for best runs per group were
reported in Section 5.

Table 5. Performance results for rmit

Run alpha-0.0alpha-0.1alpha-0.3alpha-0.5alpha-0.9alpha-1.0
Topics 19 19 19 19 19 19
Ret. 784 784 784 784 784 784
Rel. 448 448 448 448 448 448
Rel. & ret. 202 202 202 202 202 202
MAP 0.2759 0.2771 0.2779 0.2764 0.2664 0.2244
Precision@10 0.3053 0.3053 0.3105 0.3053 0.2579 0.2105
bpref 0.4455 0.4455 0.4455 0.4455 0.4455 0.4455

Table 6. Performance results for qutau

Run all Fea-
tures
5

all Fea-
tures 15

Text
Only

all Fea-
tures 15
10

all Fea-
tures 3
100

global
Features
10 100

Topics 19 19 19 19 19 19
Ret. 3767 3793 3366 3882 4009 4132
Rel. 448 448 448 448 448 448
Rel. & ret. 297 297 303 300 285 266
MAP 0.1995 0.2064 0.2711 0.1844 0.2037 0.2066
Precision@10 0.1947 0.2053 0.2842 0.1895 0.2105 0.2053
bpref 0.6507 0.6518 0.6516 0.6647 0.6501 0.6319
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Table 7. Performance results for utrecht

Run Text Annotation PCA PCA-cross
Topics 13 17 17 17
Ret. 601 1112 1550 1291
Rel. 188 390 390 390
Rel. & ret. 88 216 216 220
MAP 0.2329 0.24 0.1769 0.2324
Precision@10 0.2615 0.27 0.2235 0.2824
bpref 0.4467 0.51 0.5041 0.5145

Table 8. Performance results for utwente

Run autom.
noimg
LM 05

manual
LM 05

autom.
noimg
GPX 05

autom.
noimg
Okapi 15
075

manual
GPX 05

manual
Okapi 15
075

Topics 19 19 18 19 18 19
Ret. 4750 4750 3142 4750 3826 4750
Rel. 448 448 408 448 408 448
Rel. & ret. 282 278 233 216 239 206
MAP 0.2751 0.26 0.2567 0.211 0.2627 0.2133
Precision@10 0.2789 0.2579 0.2667 0.2263 0.2833 0.2263
bpref 0.6272 0.6244 0.5532 0.475 0.5909 0.4853
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Abstract. Many XML documents contain a mixture of text and images. Im-
ages play an important role in webpage or article presentation.  However, 
popular Information Retrieval systems still largely depend on pure text 
retrieval as it is believed that text descriptions including body text and the 
caption of images contain precise information.  On the other hand, images are 
more attractive and easier to understand than pure text. We assume that if the 
image content is used in addition to the pure text-based retrieval, the retrieval 
result should be better than text-only or image-only retrieval.  We test this 
hypothesis by doing a series of experiments using the Lonely Planet XML 
document collection. Two search engines, an XML document search engine 
using both content and structure based on text, and a content-based image 
search engine were used at the same time. The results generated by these two 
search engines were merged together to form a new result.  This paper pre-
sents our current work, initial results and vision into future work. 

1   Introduction 

Researchers have studied text retrieval for decades [1]. When text is input into a web 
browser, the search engine will output something related with the text. However, a 
traditional query for simple text documents can only return the entire document. In 
order to improve the functionality and precision of simple text retrieval, the Extensi-
ble Markup Language (XML) has been adopted as an industry standard for document 
formatting by W3C. The XML format contains the document content and metadata. It 
marks up semantic document elements such as document, paragraph, images, maps, 
etc. It contains structures and allows exploiting the internal structure in order to find 
keywords in certain document elements. For example, a traditional document based 
query can be “return a document that contains an image like this one”. An XML 
document can support the same query. However, it can also support other types of 
queries requesting more details, e.g. “return the paragraph that contains an image like 
this one” or “return the images that are similar to the sample image”. Structured 
document searching has attracted intensive research [2-3]. 
                                                           
* Supported by Jiangsu Government Scholarship of Overseas Studies. 
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A picture is worth a thousand words, and many documents therefore contain a mix-
ture of text and images. For example, almost every webpage contains text and images 
so that they are more attractive and easier to understand than a page full of text. Im-
ages play an important role in webpage or article presentation. However, this informa-
tion has not been explored sufficiently in traditional Information Retrieval systems, 
which largely depend on text searching. Many research issues are still open.   

Although images can be retrieved using metadata such as captions, authors, date, 
text description, etc, text-based image retrieval has obvious disadvantages. It is not 
easy to define a unique set of keywords to one image and when the image database is 
large it is time consuming to add the keywords. Images can also be retrieved based on 
its content using features such as colour, texture, and shape extracted from the image 
and stored in the database. If multiple features are used, the result should be fused to 
form a single result. Some fuzzy-neural techniques by fusion of texture and colour 
have been explored in image retrieval [4]. 

In general, the more information that is used to generate a query, the stricter it is 
and the more precise the searching results should be. For example, “an excellent IT 
student” is stricter than “an IT student” which is again stricter than “a student”. The 
text descriptions in an XML document, including the text content or the caption of the 
image, usually contain more precise information about an image. However, often 
more information is captured in the image than described in the caption. We assume 
that if the image content is used in addition to the pure text-based retrieval, the re-
trieval result should be better than text-only or image-only retrieval in terms of preci-
sion/recall. As image specification in the query makes the query stricter than the 
query without the image, we assume image elements can be treated as if they were 
text elements containing ordinary keywords.   

We propose to use two search engines, an XML document search engine using 
both content and structure based on text, and a content-based image search engine, 
at the same time. Multiple tests and image processing algorithms can be imple-
mented. The results generated by these two search engines should be merged to-
gether to form a new result. The goal is to include and integrate multiple media 
types into the retrieval process and to produce a meaningful ranking of documents. 
This paper presents our current work, initial results, some findings and vision into 
future work.  

The remainder of this paper is organised as follows:  Section 2 presents the overall 
system framework and Section 3 briefly discusses the database management. Section 
4 then discusses the XML document searching techniques, while the image process-
ing techniques used are described in Section 5. The result fusion technique used is 
presented in Section 6, and the implementation and testing is given in Section 7.  
Finally, Section 8 concludes the paper with a discussion on the evaluation, main les-
sons learned from the experiments, and vision for future work. 

2   System Framework 

The diagram shown in Fig. 1 shows the framework and data flow of the prototype 
system used for the work reported in this paper. 
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GUI 
- read query (NEXI query including Query by Example 
with sample image and Query by text) 
- show query results (elements and rank value) 
- write query results for submissions 

Database 
 
- Parsed and indexed XML document 
elements including terms, context, 
and images 
- Extracted features for each 
associated image in a destination. 

Query processor 
(NEXI query parser) 
and return query 
results 

Submissions 
- Query results for 
multiple runs 

Evaluation 
- Evaluation results Text Search Engine Image Search Engine 

Result Fusion 

Destinations 
- stored as XML files with links 
to images and maps 
- images 
- maps 
 

Image Feature 
Extractor 

XML Parser 

 
 

Fig. 1. System Framework 

3   Database Management of XML Documents 

An existing relational database management system is used to manage the XML 
documents. XML documents are parsed and document elements are stored and in-
dexed in a database. The structure of the database is shown in Fig. 2. It contains six 
tables. The Terms table is linked to the List table through the List_Position field. The 
document ID in the Document table and the context ID in the Context table are the 
foreign keys of the Doc_ID and Context_ID fields in the List table respectively. The 
context ID is also the foreign key of the Context_ID field in the ImageContext table. 
The image file name in the Images table is a foreign key of the Term field in the 
ImageContext table.  

The text-based searching can start from Term in the Terms table, i.e., keywords 
provided in the query such as mountain, water, etc. Following the links in Fig. 2, we 
can find where the terms appear, how many times they appear, and retrieve the con-
text of each occurrence. The image-based searching will start from the Images table.  
Given an image name, we can retrieve all its features and calculate the similarity 
between a sample image and an image in the database. If an image is desirable, we 
can return the image itself or the context of that image. We assume the same image 
can appear in multiple documents but within one document, an image just needs to 
appear once. 
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Fig. 2. Database Structure for text- and image-based XML Document Retrieval 
 

4   XML Searching Techniques 

4.1   XML File Inversion 

In our scheme each term posting in the collection consists of three path elements: the 
file name, the absolute XPath context, and the ordinal position within the XPath con-
text. The entire collection is inverted and the indexing structure supporting access to 
the terms inverted lists is stored in a MS Access database (see Fig. 2).  Details of the 
file inversion technique can be found in [5].   

4.2   Processing INEX Queries 

Processing of complex NEXI expressions is based on parsing of the expression and 
the incremental construction of a result-tree. The result-tree consists of all the ele-
ments in the collection that contains at least one of the keyword in the query (or a 
synonym or any other term deemed relevant). Each node in the result tree contains the 
necessary information to allow the computation of a score, using a TF-IDF variant 
(described in Sect. 3). After the result-tree is constructed, a traversal of the result-tree 
generates the score for each node, from the leaves to the root node. These results are 
then organized as a list and sorted by score, with the top N results returned (N = 250 
for the MM track).  
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When a NEXI expression contains multiple filters, the system constructs a result-
tree for each of the filters. After the score of each node in all trees is determined, the 
scores of support elements (i.e. elements that satisfy a support filter in the NEXI ex-
pression) are used to boost the score of result elements. In this manner, elements with 
support tend to be ranked higher than elements without support, everything else being 
equal. More specific details can be found in the paper describing our submission to 
the ad hoc track, in these proceedings. 

4.3   Ranking Scheme 

Elements are ranked according to a relevance score. In our scheme, leaf and branch 
elements need to be treated differently. Data usually occurs at leaf elements, and thus, 
our inverted list mostly stores information about leaf elements. A leaf element is con-
sidered candidate for retrieval if it contains at least one query term. A branch node is 
candidate for retrieval if it contains a relevant child element. Once an element (either 
leaf or branch) is deemed to be a candidate for retrieval its relevance score is calcu-
lated. A heuristically derived formula (1) is used to calculate the relevance score of 
leaf elements. The same equation is used for both return and support elements. The 
score is determined from query terms contained in the element. It penalizes elements 
with frequently occurring query terms (frequent in the collection), and it rewards 
elements with more unique query terms within a result element. 
 
Equation 1: Calculation of a Leaf Element’s Relevance Judgment Score 
 

−
n

=i i

in

f

t
K=L

1

1  (1) 

 

Here n is the number of unique query terms contained within the leaf element, K is 
a small integer (we used K = 5). The term Kn-1 scales up the score of elements 
having multiple distinct query terms.  The system is not sensitive to the value of K 
– we experimented with K = 5 to 25 with little difference in results. The sum is 
over all terms where ti is the frequency of the ith query term in the leaf element and 
fi is the frequency of the ith query term in the collection. This sum rewards the 
repeat occurrence of query terms with uncommon terms contributing more than 
common terms.   

Once the relevance scores of leaf elements have been calculated, they can be used 
to calculate the relevance judgment score of branch elements. A naive solution would 
be to just sum the relevance judgment score of each branch relevant children. How-
ever, this would ultimately result in root (i.e. article) elements accumulating at the top 
of the ranked list, a scenario that offers no advantage over document-level retrieval. 
Therefore, the relevance score of children elements should be somehow decreased 
while being propagated up the XML tree. A heuristically derived formula (2) is used 
to calculate the scores of intermediate branch elements.  
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Equation 2: Calculation of a Branch Element’s Relevance Judgment Score 
 

n

=i
iLD(n)=R

1

 (2) 

Where: 

     n = the number of children elements 
    D(n) = 0.49   if n = 1 
       0.99   Otherwise 
    Li = the ith return child element 

The value of the decay factor D depends on the number of relevant children that the 
branch has. If the branch has one relevant child then the decay constant is 0.49. A 
branch with only one relevant child will be ranked lower than its child. If the branch 
has multiple relevant children the decay factor is 0.99. A branch with many relevant 
children will be ranked higher than its descendants. Thus, a section with a single rele-
vant paragraph would be judged less relevant than the paragraph itself, but a section 
with several relevant paragraphs will be ranked higher than any of the paragraphs. 

Having computed scores for all results and support elements, the scores of support 
elements are added to the scores of the corresponding result elements that they sup-
port.  For instance, consider the query: 

//A[about(.//B,C)]//X[about(.//Y,Z)]  

The score of a support element //A//B will be added to all result elements //A//X//Y 
where the element A is the ancestor of both B and X//Y.   

Finally, the results consist of an entire recall tree for the query where each node is 
individually scored. 

5   Image Processing Techniques 

The image features, which have been selected for this experiment are: colour histo-
gram, texture, and detectable-lines. In our database, for each image, we store these 
features to describe the whole image, the background and the foreground. 

5.1   Colour Histogram ( )( krp ) 

The histogram of a digital image is defined as:  

kk nrh =)(   

Where
kr is the thk intensity level in the interval [0, H] and 

kn is the number of pixels 

in the image with intensity level equal to kr . The value of H depends on the image 

class (i.e. the number of bits used); for example, H = 255 when 8 bits are used to 
define a colour. It is common for the histogram to have N (< 256 for an 8 bit/pixel 
image) equally spaced bins, each representing a range of data values. The histogram, 
in this case, would calculate the number of pixels within each range.  



 Integrating Text Retrieval and Image Retrieval in XML Document Searching 517 

A normalized histogram is obtained by dividing all elements of )( krh by the total 

number of pixels in the image, which is denoted by n : 

n

rh
rp k

k

)(
)( =   

Since colour images were used, )( krp  was computed for each of the red (R), green 

(G), and blue (B) components. Sixteen bins (N = 16) were used such that 48 histo-
gram features were generated. 

5.2   Texture ( ℑ ) 

Texture analysis is frequently based on statistical properties of the intensity histo-
gram. One of the principal approaches for describing the shape of a histogram is by 
using its central moments. 

Let ir be a discrete random variable that indicates intensity levels in an image, 

and )( irp  be the corresponding normalized histogram. Given that the range of 
ir  is 0 

to G-1 where G is the number of possible intensity values, a histogram compo-
nent, )( irp , is an estimate of the probability of occurrence of intensity value 

ir . Thus, 

central moments can be defined as: 

−

=

−=
1

0

)()(
G

i
i

n
in rpmrμ   

Where, n is the order of the moment, and m is the mean. 

Table 1. Moments used for texture measurement 

Moment Texture Measurement Equation 
Mean Average intensity −

=

=
1

0

)(
G

i
ii rprm  

Standard deviation Average contrast )(2 rμσ =  

Smoothness Relative smoothness of the inten-
sity of a region (0 is for constant 
intensity and closer to 1 for regions 
with large excursions in the inten-
sity levels) 

)1(
1

1
2σ

ζ
+

−=  

Third moment Skewness of histogram (0 is sym-
metric, negative means skewed to 
the left whereas positive means 
skewed to the right) 

−

=
−=

1

0

3
3 )()(

G

i
ii rpmrμ  

Uniformity Maximum when all gray levels are 
equal (maximum uniformity) and 
decreases otherwise 

=

=

=
1

0

2 )(
G

i
irpU  

Entropy Measurement of randomness 
 
 

)(log)(
1

0
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As we are using normalized histograms, the sum of all its components is 1, 
thus 10 =μ , 01 =μ , and: 

−

=

−=
1

0

2
2 )()(

G

i
ii rpmrμ ; and so on.  

The higher order moments which can effectively measure texture is described in 
Table 1. Hence texture is represented by a feature vector of: 

],,,,,[ 3 ℜ=ℑ Um μζσ .  

5.3   Detectable Vertical-Horizontal Lines (α ) 

Hough transform computes projections of an image along specified directions. We 
can detect straight lines which are formed by strong edges on the edge image (which 
can be produced by Sobel transform). 

 

θ),( yxf  

y 

x’ y' 

 

Fig. 3. Geometry of Hough Transform 

A projection of a two-dimensional function ),( yxf is a line integral in a certain di-

rection (see Fig. 3). Projections can be computed along any angle θ . The Hough 
transform of ),( yxf  is the line integral of f parallel to the 'y axis. 

+−= ')cos'sin',sin'cos'()'( dyyxyxfxH θθθθθ
  

For the purpose of distinguishing images with building(s) as the main object, we 
have used the statistics of the horizontal and vertical lines. As shown by examples in 
Fig. 4, images with buildings have stronger detectable horizontal-vertical lines com-
pared to the images with no buildings. It should be noted, nonetheless, that this fea-
ture is robust for measuring similarity of other image types, not just for distinguishing 
buildings. The edge images generated by the process captures the structure of objects 
and thus the vertical-horizontal line features can be also be used to distinguish be-
tween non-building objects. 

To capture the characteristics of vertical-horizontal lines of an image, we have used: 

{ } { }[ ]stdavgHorzstdavgVert max,min,,,max,min,,=α   
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Where avg, min, max, and std are the average (mean), minimum, maximum, and stan-
dard deviation of the vertical (Vert) and horizontal (Horz) line’s strength. Since the 
Hough transform returns two vectors containing the strength and the corresponding 
coordinates along the x’-axis (i.e. the angle), the vertical and horizontal line features 
are obtained when the angle, θ  = 180° and 90° respectively. 

��� �

��� �� �

�

 

Fig. 4. Vertical-Horizontal Line Features in Images 

5.4   Object Extraction 

Object(s) can be extracted from an image using the following algorithm: 

1. Create a morphological structuring element (SE) with a radius of R pixels (ex-
perimentally set to disk-shaped with R = 20). 

2. Temporary background (BG’) is created by removing objects in original image 
(I) with a radius less than R pixels by opening it with the structuring element cre-
ated in step 1. This operation also estimates the background illumination. 

3. Subtract BG’ from I to create the temporary foreground (FG’). 
4. Binary foreground (FG”) is generated by converting FG’ into binary by applying 

Otsu’s global image threshold1. 
5. To create the final foreground image (FG): 

• For every pixels in FG”, if the value = 1, restore the original intensity value 
of the pixel (based on I); Else preset the intensity value to a non-FG value 
such as black (e.g. R = 0, G = 0, B = 0). 

6. To create the final background image (BG): 

• For every pixels in FG”, if the value = 0, restore the original intensity value 
of the pixel (based on I); Else preset the intensity value to a non-BG value 
such as black (e.g. R = 0, G = 0, B = 0). 

                                                           
1 Otsu, N., “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions 

on Systems, Man, and Cybernetics, vol. 9, no. 1, 1979, pp. 62-66. 
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Fig. 5. The Process of Object(s) Extraction 

The effectiveness of the object extraction algorithm can be demonstrated by the 
sample scenarios shown in Figs 5 to 8. 

5.5   Similarity Calculation and Ranking 

Although the physical meanings of different image features are different, they can 
all be represented by vectors. We used one vector to describe each feature of the 
image. Thus distance calculation approach can be applied uniformly for different 
features. We simply use the Euclidean Distance between two vectors, i.e. 

( )−=
i

ivivvvd 2
2121 )()(),(  for all elements in the two vectors. As all images are 

transformed to the same size, the distance calculation is size-invariant and the two 
vectors are always the same length. All distances are normalized to the range of [0, 1].  

6   Result Fusion 

The additional complication that is introduced through the addition of image retrieval 
cues in the NEXI expression is that we need to combine the scores of image elements 
with the scores of text elements. Rather than re-write much of our code we have de-
cided to treat image elements as if they were text elements containing ordinary key-
words. When a NEXI filter specified an image as a retrieval cue we proceeded to 
generate element scores in two steps. In the first stage, we used image processing 
techniques to rank the images in the collection for similarity (using features described 
in Sect. 5).  Images were ranked in the range [0, 1]. In the second stage, we heuristi-
cally assigned to each image element a pseudo-term frequency, just like we assign a 
term frequency to every node that contains a given term when we process a textual 
node. With this, an image node that was ranked first on the basis of image features 
can be made more dominant by being assigned a pseudo term frequency of say 5, 
while an image node ranked 250 might be assigned a node frequency of 1. In this  
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Fig. 6. Images with one dominant object 

 

Fig. 7. Images with multiple objects of interest 

 

Fig. 8. Images with background as a more dominant feature 
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manner, we were able to compute a node score as if it consisted of text elements, and we 
could then seamlessly apply the text ranking scheme that we used for text retrieval. 

In our submissions we experimented with several variations over the set of image 
features used, the length of the candidate images list to be considered, and the pseudo 
term frequency. The length of candidate images list was varied because the list was 
always long, but you would run out of relevant or really similar images pretty quickly. 
Therefore, there was no point in considering too many image elements (though there 
were only a couple of thousand images in the collection anyway). The pseudo term 
frequency was varied to provide different weightings between the image elements 
relative to the text elements. These submissions basically varied in the above parame-
ters and were labelled QUTAU-0, QUTAU-1, QUTAU-3, QUTAU-4, and QUTAU-5. 
We also submitted a baseline text only submission (QUTAU-2) that did not take into 
account any image features. The hypothesis is of course that the use of image features 
would improve precision/recall. 

Table 2. Summary results for INEX MM submissions 

Measures† QUTAU-0 QUTAU-1 QUTAU-2 QUTAU-3 QUTAU-4 QUTAU-5 
topics 19 19 19 19 19 19 
Retrieved 3767  3793 3366 3882 4009  4132  
Relevant  448 448 448 448 448 448 
Rel. ret. 297  297  303  300 285 266  
map 0.1995 0.2064 0.2711 0.1844 0.2037 0.2066  
R-prec 0.2094 0.2116 0.2641  0.1892  0.1986  0.2181  
bpref 0.6507 0.6518  0.6516  0.6647  0.6501 0.6319  
Recip_rank 0.4657 0.504  0.5414  0.4561  0.4901  0.5134  

†  Retrieved – Total number of document fragments retrieved over all queries; Relevant – Total number of 
relevant document fragments over all queries; Rel. ret. – Total number of relevant document fragments 
retrieved over all queries; map – Mean Average Precision; R-prec – R-Precision (Precision after 
R (= number of relevant for topic) document fragments retrieved); bpref – Binary Preference (top R 
judged non-relevant); recip_rank – Reciprocal rank of top relevant document. 

The assessment of the fusion quality was conducted manually based on statistical 
(e.g. term frequency) and visual criteria (e.g. image) by human assessors through 
comparing the retrieval results of different combinations between text and image 
retrieval with varying weight factors. Along the spectrum of this combination, the two 
extreme ends are the results of text-retrieval-only and image-retrieval-only. A few 
discrete points in between were also defined.  

An online evaluation tool provided by INEX2005 organizers was used as the 
evaluation environment. Fig. 9 shows the Interpolated Recall Precision Averages 
(IRPA), which shows the precision at various recall levels for the different submis-
sions. A summary of the results is tabulated in Table 2.  

The text-retrieval-only system can be observed to be superior at all recall levels 
compared to the fused text- and image-retrieval systems. This is due to the text in the 
document body and captions of being too well tagged and annotated, and thus high 
recall performance can be achieved with the text alone. The addition of image  
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Fig. 9. Recall-Precision results for INEX MM submissions 

retrieval results, on the other hand, seems to degrade performance. The difference 
between the various fused text and image systems are not statistically significant, but 
in general performed better when a higher text retrieval weighting was used. The 
results do not imply that image retrieval is not effective nor does it mean that we 
reject our hypothesis that image features would improve precision/recall; the text was 
simply too well annotated to allow image features to improve recall. Despite this, 
image retrieval cues showed potential from their recall performances. This is promis-
ing since no semantic or higher level image processing was incorporated into the 
image retrieval process.   

7   Implementation and Testing 

The prototype system was implemented on a PC using an existing database manage-
ment system (Microsoft ACCESS). The C# programming language in the .NET 
framework was used to implement the text search engine. The image search engine is 
also implemented using C#, while the image feature extractor is implemented using 
the MATLAB programming language. Both MATLAB and C# support access to the 
database.  

The test dataset used was a comprehensive database of XML documents contain-
ing text- and image- based information on holiday destinations, namely, the Lonely 
Planet XML document collection. This collection was provided by INEX2005 or-
ganizing committee. This database contains a total of 463 XML documents and 
1947 images, which contain various types of contents such as landscape, people, 
and buildings. 
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8   Conclusion and Future Work 

The retrieval quality of the search engine was evaluated through standard evaluation 
measures using various precision/recall metrics. The retrieval results including text 
and images were manually (and blindly) scored by independent assessors. This is 
done through viewing the images and the text, and judging relevance against a stated 
information need that is associated with each query. An online evaluation tool pro-
vided by INEX2005 organizers was used as the evaluation environment.  

XML document fusion usually refers to the fusion of the retrieval results of multi-
ple searching algorithms on the same collection or the fusion of search results from 
multiple document collections. Our work involves XML document fusion in the for-
mer case as only one single document collection was used and each XML document 
was unique. 

The experimental results show that the fusion of two result sets is not a trivial task. 
More complicated fusion algorithms such as Principal Component Analysis need to 
be explored in the future.  A systematic research on metrics (criteria) for assessing 
fusion quality also needs to be conducted. It is still a great challenge on the objective 
and automatic assessment of the fusion quality.  

In addition, the performance of the system at low recall levels need to be studied, 
since image similarity is a very limited retrieval cue and a long tail of similar im-
ages will unlikely produce improved results. Despite this, the experiments have 
shown that the image retrieval cues performed relatively well. Higher-level image 
understanding techniques will likely enhance the retrieval process and is a subject 
of future investigations.  

The current INEX image collection also requires revision since it was not large 
enough, and secondly, it was too well annotated to allow image features to improve 
recall. As such no system was able to improve on the text-only alternative. However, 
it is envisaged that with further investigations on a larger database, the use of image 
content in addition to pure text-retrieval, should lead to significant improvement in 
retrieval performance results. 
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Abstract. Two common approaches in retrieving images from a collection are
retrieval by text keywords and retrieval by visual content. However, it is widely
recognised that it is impossible for keywords alone to fully describe visual con-
tent. This paper reports on the participation of the RMIT University group in the
INEX 2005 multimedia track, where we investigated our approach of combining
evidence from a content-oriented XML retrieval system and a content-based im-
age retrieval system using a linear combination of evidence. Our approach yielded
the best overall result for the INEX 2005 Multimedia track using the standard
evaluation measures. We have extended our work by varying the parameter for
the linear combination of evidence, and we have also examined the performance
of runs submitted by participants by using the newly proposed HiXEval evalu-
ation metric. We show that using CBIR in conjunction with text search leads to
better retrieval performance.

1 Introduction

In a large document collection, it is common to find multimedia elements such as
images, audio, and video. Describing these multimedia elements in a standard way
is beneficial as it can assist the retrieval process. The eXtensible Markup Language
(XML) is a standard developed by the World Wide Web Consortium to describe data
in a structured manner, allowing the description of multimedia elements to be repre-
sented. The INitiative for the Evaluation of XML Retrieval (INEX) provides a platform
for participants to evaluate the effectiveness of their XML retrieval techniques using
uniform scoring procedures, and a forum to compare results. INEX 2005 comprised
seven tracks. The multimedia track was established with the aim of retrieving relevant
XML document fragments containing various types of multimedia 1, of which only text
and images were used. Besides RMIT University, four other groups participated in the
multimedia track — Queensland University of Technology (QUTAU), Utrecht Univer-
sity (UTRECHT), University of Twente (UTWENTE) and Queen Mary University of
London (QMUL).

The aim of the RMIT University group in participating in the INEX 2005 MM track
was to explore and analyse methods for combining evidence from content-based im-
age retrieval (CBIR) with content-oriented XML retrieval. In this paper, we describe a

1 Multimedia Track @ INEX,
http://inex.is.informatik.uni-duisburg.de:2004/presentations/
INEX-MM-track.pdf

N. Fuhr et al. (Eds.): INEX 2005, LNCS 3977, pp. 525–539, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="mm6" inex_track="MM" query_type="CAS" ct_no="14">
<castitle>

//destination[about(., Europe) and about(.//culture//history, king queen)]

//images//image[about(., royal palace residence src:/images/BN7386_10.jpg)]
</castitle>

<description> From all European destinations that were ruled by either

a king or a queen in their cultural history, find images depicting a royal

palace residence. </description>

<narrative>We are a group of historians interested in royal palaces. We

want to visit destinations that contain at least one royal palace. We are

focused on European destinations that were ruled by either a king or a

queen in their cultural history. From these destinations, we want to find

images depicting a royal palace residence.</narrative>

</inex_topic>

Fig. 1. Example of a multimedia CAS query with image BN7386 10.jpg, the Royal Palace in
Norway (original in colour), in the target element of the query

fusion system that combines evidence and ranks the query results based on text and im-
age similarity. The fusion system consists of two subsystems: the GNU Image Finding
Tool (GIFT), and the hybrid XML retrieval system. A technique for linear combination
of evidence is used to merge the relevance scores from the two subsystems. Six runs
submitted by our group are considered to evaluate the relative importance of image and
content-based text components, and these are also compared against the approaches of
other participants. The TREC evaluation metric (TRECeval) is used as the official assess-
ment method. We evaluate the performance of our approaches in the INEX 2005 MM
track using the standard TRECeval measures: P@1, P@5, P@10, MAP and R-Prec.

We extend our work on the initially submitted runs to further examine the parameter
that influences the weighting scheme between the two subsystems. We evaluate the
performance of runs submitted by all the INEX 2005 MM track participants using a
newlyproposed evaluation metric, namely HiXEval [5]. We also discuss results obtained
from the extended work and the HiXEval evaluation in this paper.
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The remainder of this paper is organised as follows. In Section 2, we present the
multimedia topics and their corresponding relevance judgements. We describe our ap-
proach to retrieve the XML document fragments and the associated images based on
these multimedia topics in Section 3. In Section 4, we present results obtained from our
experiments. Related work on combination of evidence for retrieving image and text
are briefly explained in Section 5. We conclude in Section 6 with a discussion of our
findings and suggestions for future work.

2 Multimedia Topics and Relevance Judgements

The INEX 2005 multimedia retrieval task focuses on combination of text and images.
The WorldGuide collection — referred as the Lonely Planet collection in the MM
track — was utilised, which was provided by the Lonely Planet organisation2. As an ini-
tial task, multimedia track participants were asked to propose several topics that might
represent typical information needs expressed by users of the collection. As an exam-
ple, one of the topics proposed by our group is “European destinations ruled by a king
or a queen that have a palace”. The full specification of this topic and the query image
that depicts the royal palace in Norway is shown in Fig. 1.

Two types of queries are explored in INEX using the Narrowed Extended XPath I
(NEXI) query: content-only (CO) and content-and-structure (CAS). CO queries are free
text queries, while CAS queries contain explicit structural constraints of the desired
target and support elements. The multimedia track uses the latter query type to represent
a topic. The multimedia query is contained in the castitle element which represents
the information to be retrieved from the Lonely Planet collection.

The CAS query consists of two elements: target and support. The target element of
the query is the last node in the query path, and specifies the element that should be
returned as the result. Support elements specify additional structural constraints that
should be met. For the topic in Fig. 1, the target element of the query

//destination//images//image

indicates that the element to be retrieved is an image element which contains an image
reference in the source (src). The support elements of the query are:

//destination
//destination//culture//history
//destination//images//image

In total, twenty-three multimedia topics that have corresponding relevance judge-
ments were formulated for this collection. These belong to three categories:

1. Topics that contain only text. This topic category does not include any image refer-
ences in either the target or support elements;

2. Topics that contain a mixture of images and text, where the image reference is
explicitly given in the about clause of the support elements; and

2 http://www.lonelyplanet.com/
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3. Topics that contain a mixture of images and text, except that here the image refer-
ence is explicitly stated in the about clause of the target element.

The number of multimedia topics in each category is shown in Table 1. The example
given in Fig. 1 belongs to the third topic category.

Relevance judgements for the multimedia topics are divided into two sets: official
and extended. The official assessment set includes 19 topics that contain results that
match the relevance judgements. The extended assessment set has 23 topics, of which
the additional four topics contain results that do not match the relevance judgements.
These four topics were misinterpreted during the relevance judgements procedure. The
official assessment set is used for comparing the submitted runs from the INEX 2005
MM track participants.

Table 1. Topic category, number of topics and retrieval systems used, and collection involved

Topic category 1 2 3

Number of official topics 8 4 7
Number of extended topics 12 4 7
Retrieval system used Hybrid XML Hybrid XML and GIFT Hybrid XML and GIFT
Collection involved Text only Text and image Text and image

3 Our Approach

In this section, we describe our fusion system that consists of two subsystems to obtain
the results for the multimedia queries. Since the XML document structure serves as a
semantic backbone for retrieval of the multimedia fragments, we use a content-oriented
hybrid XML retrieval system [4] to retrieve the relevant document fragments. The GNU
Image Finding Tool (GIFT)3, a content-based image retrieval system, is used to retrieve
the results based on the visual features of the images.

We aim to achieve the chorus effect. According to Vogt and Cottrell [9], “The
chorus effect occurs when several retrieval approaches suggest that an item is rel-
evant to a query ... this tends to be stronger evidence for relevance than a single
approach doing so”. To achieve this, we use data fusion techniques to combine the
evidence from GIFT and the content-oriented hybrid XML retrieval system in three
phases [8]:

1. The collection selection phase identifies the document collection that is most likely
to contain relevant document fragments for the user queries.

2. The document fragment selection phase determines the number of relevant docu-
ment fragments to be retrieved from the document collection.

3. The merging (or fusion) phase combines the evidence from multiple retrieval
systems.

3 http://www.gnu.org/software/gift/
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3.1 Phase One: Collection Selection

We view the Lonely Planet collection as having three different groups of information
items that are related to one another. The first group contains the XML text documents,
the second contains images, and the third contains maps. As illustrated in Table 1, the
XML text documents are used to process all the queries, while the image data is used
for only the queries in topic categories 2 and 3. The map data was not used, since the
topic which specified the map as the target element was not assessed.

3.2 Phase Two: Document Fragment Selection

In this phase, each subsystem retrieves document fragments (text or images) and re-
turns a list of retrieval status values (RSVs) presented in descending order. First 250
top-ranked document fragments are returned from our content-oriented hybrid XML
retrieval system. For GIFT, the RSVs of all the images in the collection are returned.
The following sections explain how each subsystem is used to generate RSVs for each
multimedia query; the lists are later merged in phase three to produce the final results.

Content-Based Image Retrieval. Content-based image retrieval aims to retrieve im-
ages on the basis of features automatically extracted from the images themselves. The

Fig. 2. Querying image BN7386 10.jpg into GIFT (original in colour)
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Fig. 3. First twenty results of a GIFT image query (best viewed in colour)

GIFT system indexes an image collection by extracting image features and indexing
them using an inverted file data structure [7].

GIFT uses the HSV (Hue-Saturation-Value) colour space for local and global colour
features [7]. For extracting the image texture, a bank of circularly symmetric Gabor
filters is used. GIFT evaluates and calculates the query image and the target image
feature similarity based on the data from the inverted file. The results of a query are
presented to the user in the form of a ranked list. GIFT also provides the mechanism to
perform relevance feedback. We did not perform any relevance feedback in this work.

For the multimedia topics, we presented the images listed in the source (src) element
of the multimedia CAS query as the query image to GIFT. We used the default Classical
IDF algorithm and set the search pruning option to 100%. This allows us to perform a
complete feature evaluation for the query image, even though the query processing time
is longer. We retrieved and ranked all the images in the Lonely Planet collection.

Referring to the multimedia topic presented earlier, the query image of Fig. 1 is
provided to GIFT and Fig. 2 is a screenshot of the query. The query results are presented
in Fig. 3, where the RSVs are ranked in descending order from left to right, and top to
bottom.
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Table 2. The values for P@n, MAP and R-Prec using TRECeval and HiXEval for each run
submitted by INEX 2005 MM track participants

Run TRECeval HiXEval
P@1 P@5 P@10 MAP R-Prec P@1 P@5 P@10 MAP R-Prec

RMIT
rmit-0 0.4737 0.3684 0.3053 0.2759 0.3267 0.3498 0.2668 0.2179 0.1952 0.2485
rmit-1 0.4737 0.3684 0.3053 0.2771 0.3267 0.3491 0.2669 0.2177 0.1958 0.2485
rmit-2 0.4737 0.3684 0.3105 0.2779 0.3259 0.3465 0.2664 0.2216 0.1960 0.2479
rmit-3 0.4737 0.3684 0.3053 0.2764 0.3259 0.3488 0.2563 0.2176 0.1953 0.2479
rmit-4 0.5263 0.3368 0.2579 0.2664 0.3168 0.4014 0.2358 0.1938 0.1930 0.2429
rmit-5 0.4737 0.2737 0.2105 0.2244 0.2525 0.3626 0.2150 0.1671 0.1700 0.1935

QUTAU
qutau-0 0.4211 0.2737 0.1947 0.1995 0.2094 0.3098 0.1970 0.1457 0.1557 0.1445
qutau-1 0.4737 0.2737 0.2053 0.2064 0.2116 0.3135 0.2046 0.1538 0.1582 0.1473
qutau-2 0.4737 0.3579 0.2842 0.2711 0.2641 0.3161 0.2602 0.2132 0.1937 0.1871
qutau-3 0.3684 0.2842 0.1895 0.1844 0.1892 0.2600 0.2037 0.1519 0.1429 0.1360
qutau-4 0.4211 0.3053 0.2105 0.2037 0.1986 0.2575 0.2475 0.1715 0.1532 0.1535
qutau-5 0.4737 0.2842 0.2053 0.2066 0.2181 0.4181 0.2210 0.1715 0.1744 0.1751

UTRECHT
utrecht-0 0.4615 0.3385 0.2615 0.2329 0.2776 0.3278 0.2007 0.1537 0.1229 0.1627
utrecht-1 0.5294 0.3529 0.2706 0.2392 0.2747 0.3481 0.2497 0.1965 0.1581 0.1974
utrecht-2 0.3529 0.2941 0.2235 0.1769 0.2073 0.2678 0.2094 0.1487 0.1165 0.1519
utrecht-3 0.5294 0.3294 0.2824 0.2324 0.2648 0.3481 0.2462 0.1914 0.1477 0.1864
utrecht-4 0.5294 0.3294 0.2824 0.2324 0.2648 0.3481 0.2462 0.1914 0.1477 0.1864
utrecht-5 0.1579 0.0632 0.0737 0.0554 0.0697 0.1313 0.0524 0.0593 0.0440 0.0567

UTWENTE
utwente-0 0.4211 0.3053 0.2789 0.2751 0.2799 0.3559 0.2555 0.2255 0.2208 0.2266
utwente-1 0.4211 0.2947 0.2579 0.26 0.2692 0.3559 0.2545 0.2246 0.2129 0.2216
utwente-2 0.3889 0.3444 0.2667 0.2567 0.2434 0.2894 0.2346 0.1738 0.1689 0.1681
utwente-3 0.2105 0.2211 0.2263 0.211 0.2227 0.1773 0.1877 0.1739 0.1400 0.1549
utwente-4 0.3889 0.3556 0.2833 0.2627 0.2458 0.2894 0.2475 0.1896 0.1739 0.1680
utwente-5 0.2105 0.2211 0.2263 0.2133 0.2196 0.1773 0.1877 0.1740 0.1423 0.1518

QMUL
qmul-0 0.0526 0.0211 0.0368 0.0412 0.0423 0.0526 0.0211 0.0354 0.0376 0.0409

Italic values – best performance among runs for each participating group and each measure.
Bold values – best overall performance among all runs for each measure.

Content-Oriented Hybrid XML Retrieval. The second subsystem we used for text
retrieval in the INEX 2005 MM track follows a hybrid XML retrieval approach [4],
combining information retrieval features from Zettair4 (a full-text search engine) with
XML-specific retrieval features from eXist5 (a native XML database).

Each multimedia topic was first automatically translated into a Zettair query. Terms
that appear in the castitle part of the topic (with all structural query constraints and

4 http://www.seg.rmit.edu.au/zettair/
5 http://exist-db.org/
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image references completely removed) were used to formulate the Zettair query. A list
of (up to) 250 destination elements were presented in a descending order accord-
ing to their estimated likelihood of relevance. To retrieve elements rather than full ar-
ticles, a second topic translation module was used to formulate a query to eXist. As
the support and target parts of each multimedia query were strictly matched, both the
terms and the structural query constraints from the topic (without the actual image ref-
erences) were used to formulate the eXist query. We used the eXist OR query operator
to generate the element answer list for a given topic. The answer list contains (up to)
250 matching elements, taken from articles that were highly ranked in the list of articles
previously returned by Zettair.

Lastly, a post-processing retrieval module with an XML-specific ranking heuristic
(TPF) [6] was used to rank and produce the final list of RSVs.

3.3 Phase Three: Merging Evidence of CBIR and Hybrid XML Retrieval

To fuse the two RSV lists into a single ranked result list R for the multimedia queries,
we use a simple linear combination of evidence [1]:

R = α ·SI +(1 − α) ·ST

Here, α is a weighting parameter (determines the weight of GIFT versus hybrid XML
retrieval), SI represents the image RSV obtained from GIFT, and ST is the RSV of the
same image obtained from the hybrid XML retrieval system.

To investigate the effect of giving certain biases to a system, we vary the α value
between 0 to 1. When the value of α is set to 1, only the RSVs from GIFT are used.
On the other hand, only the hybrid XML retrieval RSVs are used when the value of α
is set to 0. For the INEX 2005 MM track, we submitted six runs with the α value set to
0.0, 0.1, 0.3, 0.5, 0.9 and 1.0, respectively. Results obtained from these runs, which we
denote as rmit-0 to rmit-5, are shown in Table 2.

4 Experiments and Results

In this section we provide a description of the evaluation metrics used, and we
analyse results obtained from the official INEX 2005 multimedia runs submitted
by each participating group, including those obtained from the additional RMIT
runs.

4.1 Evaluation Metrics

The TREC evaluation metric was adopted for the multimedia track assessment in INEX
2005. Binary relevance judgements were used to evaluate the runs. We evaluated our
results based on the standard recall and precision retrieval performance measures. The
following measures were used:

– Precision at cut-off (P@n): Precision after n document fragments have been
retrieved.
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– Mean Average Precision (MAP): The mean of the average precisions calculated for
each topic. Average precision is the average of the precisions calculated at each
natural recall level.

– Recall-precision (R-prec): Precision after the total number of relevant document
fragments have been retrieved.

– Average interpolated precision at 11 standard recall levels (0%-100%).

In addition to the above evaluation measures, we also report values obtained with HiXE-
val, an alternative evaluation metric for XML retrieval that is solely based on the amount
of highlighted relevant information [5]. The reported values are: P@n, which measures
the proportion of relevant information to all the information retrieved at a rank n; MAP,
the mean average precision calculated at natural recall levels; and R-prec, which re-
flects the measured precision after the total number of relevant document fragments
have been retrieved.

4.2 Result Analysis

We present the analysis and evaluation for INEX 2005 multimedia runs and additional
RMIT runs based on the 19 topics that belong to the official multimedia assessment set.

Official INEX 2005 Multimedia Runs. We analyse the runs submitted by the
INEX MM track participants using both TRECeval and HiXEval evaluation met-
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Fig. 4. Interpolated average precision at 11 standard recall levels using TRECeval for the best
performing runs submitted by the INEX 2005 MM track participants
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Fig. 5. Interpolated average precision at 11 standard recall levels using HiXEval for the best
performing runs submitted by the INEX 2005 MM track participants

rics. As presented in Table 2, we report results obtained with precision at cut-
offs 1, 5, 10, and with MAP and R-Prec for both metrics. For each participating
group, the best performance under each measure is shown in italics. For each evalu-
ation measure, the best run performance observed among all participants is shown in
bold.

Using the TRECeval evaluation metric, UTRECHT performed best for P@1. How-
ever, our best run outperformed the others for P@5, P@10, MAP and R-prec. Using
HiXEval as an evaluation metric, QUTAU performed best for P@1, our best run again
outperformed the others for P@5 and R-Prec, while UTWENTE performed best for
P@10 and MAP. The difference in the observed behaviour between the two metrics can
be explained by the fact that the two metrics are based on different evaluation method-
ologies. Indeed, recall under TRECeval is measured as the fraction of relevant ele-
ments retrieved, whereas HiXEval uses the fraction of relevant information contained
by the elements retrieved [5]. Arguably, a finer level of evaluation detail is captured
by HiXEval which is not captured by TRECeval. This, in turn, suggests that, for the
MAP measure of HiXEval, on average the best performing UTWENTE run is indeed
capable of retrieving larger quantities of relevant information than our best performing
run.

Figure 4 illustrates the performance for the multimedia track participants based on
the highest MAP values of the runs using TRECeval. Figure 5 shows the same graph
pattern when using HiXEval as the evaluation metric. Both graphs show that, with the
exception of QMUL, the observed average performance among the best runs submitted
by participants was similar.
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Fig. 6. Interpolated average precision at 11 standard recall levels using TRECeval for the six
official RMIT runs submitted to the INEX 2005 MM track

Additional RMIT Runs. As shown in Table 2, at one document fragment retrieved
the highest precision among the RMIT runs is observed for run rmit-4 (with the
value for α = 0.9). There is no visible difference in precision for all the other runs
with P@1. With P@5, combining evidence from text and image at the same weight
(α = 0.5) leads to similar performance as when α values of 0.0, 0.1 and 0.3 are used
(reflected by the observed performance of runs rmit-0 to rmit-3). The precision
values drop as the α value is increased. With MAP, the run rmit-2 (α = 0.3) produces
the best performance. With R-prec, runs rmit-0 and rmit-1 perform best and
exhibit almost the same performance.

Based on Fig. 6, three RMIT runs (rmit-0, rmit-1 and rmit-2) produce the
best overall interpolated precision averages. Run rmit-4 performed best at low recall
levels. A constant performance can be seen for all the runs for recall level of 0.8 and
above.

To analyse the changes in performance when the parameter α varies between 0 and 1,
we performed additional runs at α intervals of 0.05. Figure 7 shows the performance of
our runs for twenty different values of the parameter α , as measured by P@1, P@5 and
P@10. We observe that, to achieve the best performance under P@1, values for 0.85 and
0.9 should be used for the parameter α . On the other hand, the best performance under
P@5 and P@10 is achieved when α = 0.4.

The highestMAP performance is observed when α = 0.25, which can be seen in Fig. 8.
On the other hand, the highest R-prec performance is obtained when α is less than
0.15. Figure 9 illustrates the R-Prec performance when all the 20 α values are used.
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Fig. 7. Precision at cut-off 1, 5 and 10 for α values between 0.0 to 1.0
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Fig. 9. R-Prec for α values between 0.0 to 1.0

We conclude that the content-oriented XML retrieval system benefits by using some
evidence from a CBIR system; indeed, as measured by MAP and R-prec, increas-
ing the weight of the hybrid XML retrieval system component in the fusion system
yields better performance than when any of the two subsystems are used in isolation.
When only a CBIR system is used to retrieve multimedia document fragments, precision
is poor.

5 Related Work

Data fusion, also known as combination of evidence, is a method of merging multiple
sources of evidence. In information retrieval, data fusion has been shown to improve
the retrieval effectiveness when compared to using a single retrieval strategy [3, 8, 9].

Multimedia retrieval using combination of evidence has been studied by Haque [2],
who compared the retrieval performance of using only image and multimedia (combi-
nation of text and image). He conducted experiments using three types of combining
algorithms: feature merging, weighted sum of ranking score, and weighted sum of in-
verse rank position. Haque concluded that using a combination of evidence, multimedia
retrieval performs better than image retrieval. The weighted sum of inverse rank position
algorithm is shown to have the highest eleven point average precision in the multimedia
retrieval, while the weighted sum of ranking score algorithm performed slightly lower
than the weighted sum of inverse rank position algorithm.

Aslandogan and Yu [1] have compared the retrieval performance of indexing images
of people on the Web using four approaches: text evidence followed by face detection,
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face detection and recognition, linear combination of evidence, and Dempster-Shafer
theory of evidence. They reported that linear combination of evidence and the
Dempster-Shafer theory of evidence yielded the same retrieval performance.

6 Conclusions and Future Work

In this paper we have reported on our participation in the multimedia track of INEX
2005. As part of the XML-multimedia retrieval task, we submitted six runs for the
official evaluation by the multimedia track organisers. These runs reflect the various
relative weights of 0 to 1. Our approach demonstrated the overall best performance
for P@5, P@10, MAP and R-Prec in the INEX 2005 MM track using the standard
evaluation measures.

We have used the linear combination of evidence to merge the RSVs from two re-
trieval subsystems for retrieving multimedia information from structured documents.
We also carried out additional runs to examine the effect of varying the parameter used
for the linear combination of evidence (α). Having α = 0.25 leads to the highest MAP,
and the best R-prec values are when α is less than 0.15. We have also evaluated
the submitted runs from the participants using HiXEval, where we observed a slightly
different performance behaviour.

We conclude that a CBIR system needs a substantial support from a text-based sys-
tem to effectively retrieve the desired images in a collection. Conversely, retrieving
images based only on the surrounding text can be achieved without using a CBIR sys-
tem, but better retrieval performance will be observed if some evidence from a CBIR
system is incorporated.

We plan to extend this work by investigating different evidence combination methods
for retrieving structured text and multimedia elements.
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Abstract. In this article an XML-driven approach for multimedia in-
formation retrieval is presented and evaluated, which uses principal com-
ponent analysis to derive a composite ranking for a set of XML elements
that have a multimedia character. The multimedia strategies that imple-
ment the PCA module on top of the B3-SDR system allow for the inte-
gration of image retrieval with the already present text retrieval modules.

Three different strategies are defined. The first strategy implements
annotation-based image retrieval, which uses the caption of an image to
find related images using a keyword-based search. The second component
enables content-based multimedia retrieval by using PCA to derive a
composite ranking, which reflects the combined relevance for text and
images that are present within an XML element. A simple content-based
image retrieval system is build for this purpose, which uses ‘query by
example’. The last strategy allows for a bidirectional combination of the
first two strategies, where the content-based image retrieval component
benefits from the additional images retrieved by the annotation-based
search, and vice versa.

The multimedia strategies are evaluated within the INEX 2005 mul-
timedia track, where based on the Lonelyplanet Worldguide and a set
of related topics the retrieval performance is measured in terms of recall
and precision. The outcome of the experiment shows that the multime-
dia strategies have a positive influence on the retrieval performance when
compared to the text-based XML retrieval system. However, the PCA
component did not yet fully live up to its expectation, which is probably
due to the poor performance of the ad hoc build image retrieval system
that is used for the experiment.

1 Introduction

Structured document retrieval allows for the retrieval of document fragments,
i.e. XML elements, containing relevant information [1]. The main INEX ad-
hoc task focusses on text-based XML element retrieval. Although text is dom-
inantly present in most XML document collections, other types of media can
also be found in those collections. Existing research on multimedia information
retrieval [2, 3] has already shown that it is far from trivial to determine the com-
bined relevance of a document that contains several multimedia objects. The
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objective here is to exploit the XML structure that provides a logical level at
which multimedia objects are connected, to improve the retrieval performance
of an XML-driven multimedia information retrieval system.

To enable XML-driven multimedia retrieval, i.e. to derive a composite ranking
that combines the relevance of both text and images that are present with an
XML element, principal component analysis (PCA) is used by the B3-SDR sys-
tem. PCA [4] is a classical statistical method that has been widely used in data
analysis and compression [5]. In short, it provides us the means to transform an
N-dimensional data set to a representation in space with a lower dimensionality,
while minimizing the error introduced due to the projection. Alternatively, a
composite ranking for an XML element can be derived, by using (static) weights
for each media object that is present in the collection [6]. However, this can
only work, if one assumes that the contribution of the different media types is
constant for various information needs. When using PCA, the distribution of
these weights varies for the different information requests, and depends on the
nature of the individual rankings for each media type. It is therefore expected
that this will result in a more natural composite ranking, which better fits the
user’s information need.

For the integration of image retrieval into the B3-SDR system, a custom-build
image retrieval component is used that allows for:

1. annotation-based search [7] on the caption of images, given an example image
or keyword combination.

2. content-based image retrieval[8, 9], where a combination of image features is
used to determine the visual relevance of an image to an example image.

The following combinations of text and image retrieval are used to extend the
B3-SDR system:

– Annotation-based image retrieval. Initiated by a keyword search, the cap-
tions of images are matched to retrieve relevant images. This component is
only activated, whenever an image or map element is requested.

– PCA-based text and image retrieval. If an image or map element is requested,
two queries are executed. A textual search is executed, using the keywords
of the information request, and a content-based image search is performed
using the example image provided in the request. PCA is then used to derive
a composite ranking of XML elements for both results sets.

– PCA-cross retrieval. This strategy combines the first two approaches. It ini-
tiates the annotation-based image retrieval, using both the keywords and the
caption of the example image, and extends the content-based image retrieval
step with the results found for the annotation-based search. In other words,
it uses (bidirectional) query expansion.

The above defined strategies are evaluated in the INEX 2005 Multimedia track
[10]. The objective of the track is to retrieve relevant document fragments based
on an information need with a structured multimedia character. A structured
document retrieval approach in that case should be able to combine the rel-
evances of the different media types into a single (meaningful) ranking that is
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presented to the user. The INEX multimedia track differs from other approaches
in multimedia information retrieval [2, 11, 12], in the sense that it focuses on us-
ing the structure of the document to extract, relate, and combine the relevances
of different multimedia fragments. The focus for 2005 is on the combination of
text and image retrieval, using a strict interpretation of the structural compo-
nents of the specified information need.

The retrieval strategies are evaluated in a retrieval performance experiment
that is coordinated by the INEX 2005 Multimedia track. For the experiment the
Lonelyplanet Worldguide is used, which is an XML document collection that
uses semantic tagging [13] and contains a combination of text fragments and
images discussing useful information about various destinations on our planet.
The retrieval performance is measured in terms of recall and precision [14] using
a set of 17 topics. More details about the experimental setup can be found in [10].

Organisation
In the remainder of this article an introduction to principal component analysis
is given in Section 2. It discusses some theoretical background and presents a
step-by-step approach for using PCA in the context of XML-driven multime-
dia information retrieval. Section 3 discusses the different multimedia strategies
that are evaluated in the retrieval performance experiment. The result of the
experiment is discussed in Section 4, and finally, the conclusions are presented
in Section 5.

2 Introduction to Principal Component Analysis

Principal component analysis (PCA) [4, 5] is a mathematical procedure that
transforms a multivariate data set that contains a number of (possibly) corre-
lated variables into a (smaller) number of uncorrelated variables called principal
components. The objective of principal component analysis is to reduce the di-
mensionality (number of variables) of the dataset but retain most of the original
variability in the data. The first principal component accounts for as much of
the variability in the data as possible, and each succeeding component accounts
for as much of the remaining variability as possible.

2.1 Theoretical Background

Analysis of multivariate data plays a key role in data analysis. Multivariate data
consists of many different attributes or variables recorded for each observation.
If there are N variables in a data set, each variable could be regarded as consti-
tuting a different dimension, in a N-dimensional space. Multi-dimensional space
is often difficult to visualize, and thus the main objectives of unsupervised learn-
ing methods are to reduce dimensionality, scoring all observations based on a
composite index and clustering similar observations together based on multi-
attributes. In the context of multimedia information retrieval, the objective is
to derive a 1-dimensional space, i.e. a ranking, that best describes a composite
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relevance for each XML fragment, containing 1 or more different multimedia
objects.

PCA summarizes the variation in a correlated multi-attribute to a set of un-
correlated components, each of which is a particular linear combination of the
original variables. The extracted uncorrelated components are called principal
components and are estimated from the eigenvectors of the covariance or cor-
relation matrix of the original variables. Therefore, the objective of PCA is to
achieve parsimony and reduce dimensionality by extracting the smallest number
of components that account for most of the variation in the original multivariate
data and to summarize the data with little loss of information [4].

In PCA, un-correlated principal components are extracted by linear trans-
formations of the original variables so that the first few principal components
contain most of the variations in the original data set. These principal compo-
nents are extracted in decreasing order of importance so that the first principal
component accounts for as much of the variation as possible and each successive
component accounts for a little less.

To reproduce the total system variability of the original N variables, we need
all N principal components. However, if the first few principal components ac-
count for a large proportion of the variability (80-90%), the objective of dimen-
sion reduction is successfully achieved. Because the first principal component
accounts for the co-variation shared by all attributes, this may be a better es-
timate than simple or weighted averages of the original variables. Thus, PCA
can be useful when there is a high-degree of correlation is present in the multi-
attributes.

2.2 Step-by-Step

To produce a composite ranking for the different media that can be present in
an XML fragment, the following PCA procedure is used.

Step 1. Derive a (synchronised) ranking for each media type. First, a ranking
is produced for each media type present in the document collection, given a
user information need. In the case of the INEX 2005 Multimedia track, a text-
based ranking and an image-based ranking of XML elements is produced for
each information request. In case of the image-retrieval component, the ranking
is based on the distance of an image to the information need, i.e. example image.
A low distance score for an image, corresponds with a high relevance score for
the (underlying) XML element. If a non-zero relevance score is obtained for an
XML element in both rankings, the element apparently contains both textual
and visual relevant information. If a relevance score is only contained in one of
the rankings, a zero score for that element is added to the other ranking. After
this step, both rankings contain the same set of XML elements, over which the
PCA will be performed.

Consider the two example rankings T and I of Table 1. T represents a ranking
of XML elements based on the textual relevance, while I represents a ranking
of XML elements for the image-based component.
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Table 1. Example rankings T and I , during various stages of the PCA procedure

Element T I T ′ I ′ T ′′ I ′′

A 10.30 1.50 1.00 0.74 0.51 0.21
B 8.60 1.20 0.79 0.58 0.30 0.05
C 8.40 0.60 0.77 0.26 0.28 -0.27
D 6.70 1.80 0.56 0.89 0.07 0.36
E 6.50 2.00 0.54 1.00 0.05 0.47
F 5.90 0.30 0.46 0.11 -0.03 -0.42
G 4.80 1.00 0.33 0.47 -0.16 -0.06
H 4.70 0.90 0.32 0.42 -0.17 -0.11
I 3.20 1.70 0.13 0.84 -0.36 0.31
J 2.10 0.10 0.00 0.00 -0.49 -0.53

T̄ ′ = 0.49 Ī ′ = 0.53

Step 2. Apply a min-max normalisation to each ranking. A min-max normali-
sation [15] step is applied to both rankings, such that they both span the [0,1]
range. The columns T ′ and I ′ contain the normalised rankings of T and I.

Step 3. Subtract the mean for each ranking. The means T̄ and Ī are then calcu-
lated for both rankings using the formula:

X̄ =
∑n

i=1 Xi

n
(1)

The rankings are balanced around 0 by subtracting the mean relevance score
from each of the scores in the ranking. The columns T ′′ and I ′′ of Table 1
contain the balanced normalised rankings of T and I. These steps are required
to eventually calculate the eigenvectors.

Step 4. Calculate the covariance matrix. The covariance is used to measure the
spread of data in a 2-dimensional dataset. If you calculate the covariance between
one dimension and itself, you get the variance. The covariance between X and
Y is calculated by:

cov(X, Y ) =
∑n

i=1 (Xi − X̄)(Yi − Ȳ )
n − 1

(2)

The covariance matrix C is defined as:

C = (ci,j , ci,j = cov(Dimi, Dimj)), (3)

where C is a matrix with n rows and n columns, and Dimx is the xth dimension.
Based on the rankings T ′ and I ′ the following covariance matrix is constructed:

C =
[

cov(T ′, T ′) cov(T ′, I ′)
cov(I ′, T ′) cov(I ′, I ′)

]
=
[

0.095 0.028
0.028 0.116

]
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Step 5. Calculate the eigenvalues and eigenvectors of the covariance matrix.
Eigenvalues measure the amount of the variation explained by each principal
component and will be largest for the first component and smaller for the sub-
sequent components. An eigenvalue greater than 1 indicates that the principal
component accounts for more variance than accounted by one of the original vari-
ables in the standardised data set [5]. This is commonly used as a cut-off point
for which principal components are retained. This property is neglected here, be-
cause the outcome should always be a 1-dimensional space. As a consequence, if
a low correlation is present, the produced ranking is not as accurate, i.e. reflects
the user information need, as desired. Eigenvectors provide the weights to com-
pute the un-correlated principal components, which are the linear combination
of the standardized or un-standardized original variables. In this case, the cen-
tred standardised original variables (data set) is used. In principle, calculation
of the eigenvalues λ and eigenvectors v is based on the property that:

Cv = λv (4)

Based on the 2 × 2 covariance matrix C this can be rewritten to:∣∣∣∣0.095 − λ 0.028
0.028 0.116 − λ

∣∣∣∣ = 0

≡ λ2 − 0.211λ + 0.01 = 0 ⇒ λ1 = 0.135ORλ2 = 0.076

Note that for this example, both eigenvalues are small, which might indicate
that the quality of the composite ranking is disputable. With both eigenvalues
λ1 and λ2 known, the eigenvectors can be derived using:

v =
[

−cov(T, T )
cov(T, I) − λ

]
(5)

Applying this to λ1 and λ2 gives the corresponding eigenvectors:

v1 =
[

−0.095
−0.107

]
∧ v2 =

[
−0.095
−0.048

]

Step 6. Choose components and form a feature vector. The principal component
is determined by selecting the largest eigenvalue. In this case: λ1. A feature vector
f is used to transform the original data set to the new data set, which has a
lower dimension. In this case, the feature vector only consists of the eigenvector
for the principal component: v1. However, using this will not always produce the
desired effect. Given the intuitition that an element with maximum score (1,1)
should always be ranking first, the feature vector should go through this point.
This is visualised in Figure 1, using the normalised rankings T ′ and I ′.

To derive the final composite ranking the follow formula is used:

PCA(T, I) = 1 −
([

T ′

I ′

]
− 1
)

f, (6)
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Fig. 1. Normalised rankings T ′ and I ′, with feature vector v1 going through (1, 1)

Where
[
T ′

I ′

]
is the matrix filled with the normalised rsv values for the rankings

T ′ and I ′ and f refers to the feature vector. Applying this to the example gives
the composite ranking as presented in Table 2. This ranking would be obtained
when using an orthogonal transposition of each point plotted in Figure 1 onto
the feature vector.

Step 7. Apply a min-max normalisation to the composite ranking. In the final
step, a min-max normalisation step is applied to the PCA ranking to prepare
the data for further processing.

3 Multimedia Strategies for B3-SDR

In this section the four different strategies are described that are evaluated in
Section 4. Beside the standard text retrieval module, the multimedia strategies
described, allow the B3-SDRsystem to search for images using image annota-
tions, and to derive a composite ranking for multimedia information retrieval,
based on PCA. Furthermore, the strategies can be combined, such that the
content-based multimedia information retrieval component based on PCA can
benefit from the annotation-based search.

Text-based Retrieval. A simple text-based run is submitted, which only uses
the textual component of the information need to retrieve relevant information.
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Table 2. The composite ranking derived for the example based on T and I , using PCA

Element PCA(T,I)
A 0.97184
E 0.95598
D 0.94703
B 0.93525
I 0.90085
C 0.89915
G 0.87996
H 0.87317
F 0.85329
J 0.798

This strategy is intended to function as a base-line, which can be used to see if
multimedia information retrieval on an XML-based document collection can lead
to a higher retrieval performance in terms of recall and precision. More details
on the text-based retrieval strategy can be found in [16].

Annotation-based Retrieval. For each image in the Lonelyplanet Worldguide, a
caption, data and the name of the photographer is available. Without using any
content-based image retrieval techniques, the captions of images can be used
to perform an annotation-based search for relevant images. Given the example
image defined in the information request, its caption is used to expand the
original query terms of the information request, after which a simple text-based
search is performed.

Content-based Multimedia Retrieval Using PCA. The PCA run splits the in-
formation request (query) into a text search and an image search, whenever
an image or map element is requested. The results are filtered to match the
requested element type, and PCA is used to derive a composite ranking. Af-
ter having computed the intermediate results for the image/map elements, the
additional constraints of the information request are applied.

Content-based Multimedia Retrieval Using PCA and Annotation Enhancement.
The PCA-cross run combines the method for content-based information retrieval,
based on PCA and the method for annotation-based retrieval. First additional
images are retrieved using the image caption of the example image and the
already defined keywords of the information request, when the annotation-based
search is performed. The result of the annotation-based search is then used to
expand the content-based image search with additional images.

4 Results

Evaluation of multimedia retrieval strategies in the Multimedia track is based
on the official measures used for TREC. In this section the following is reported:
summary table statistics, interpolated recall-precision averages, precision at doc-
ument cut-off levels and an analysis of the performance per topic.
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4.1 Summary Table Statistics

In Table 3 the summary table statistics are presented. For the official evaluation
of the multimedia track 17 topics have been included. The Text-based strategy,
however could not compute a ranking for four topics, due to the multimedia
character of the information need. This is a first indication that if the user has
a (complex) multimedia information need, existing techniques, based on text
retrieval, will not be satisfactory.

Table 3. Summary table statistics

Measures Text Annotation PCA PCA-cross
Topics 13 17 17 17
Retrieved 601 1112 1550 1291
Relevant 188 390 390 390
Relevant retrieved 88 216 216 220
MAP 0.2329 0.2392 0.1769 0.2324
Precision@10 0.2615 0.2706 0.2235 0.2824
bpref 0.4467 0.5113 0.5041 0.5145

In total 390 XML elements are judged relevant for the 17 topics, and the
PCA-cross strategy managed to retrieve the highest number of relevance ele-
ments (220). The mean average precision (MAP) indicates that a best overall
performance has been obtained with the Annotation-based strategy, while the
Precision@10 and bpref measures slightly favour the PCA-cross strategy. Unfor-
tunately, the plain PCA run does not lead to an increase in retrieval performance
in terms of precision when compared to the Text-based strategy. However recall
is slightly better for the PCA run.

4.2 Interpolated Recall-Precision Averages

Figure 2 shows the interpolated precision averages at eleven standard recall levels.
From the figure, it can be clearly seen that using the image annotations has a
positive effect on the precision, when inspecting the lower recall levels. It appears
that the Text-based run has higher overall performance than the PCA run. The
PCA-cross run however can compete with the Text-based run and the Annotation-
based run. Note that the results of Figure 2 are distorted, in favor of the Text-based
run. The four missing topics for the Text-based run are not taken into account at
this point. Therefore the Text-based strategy should be ignored here.

4.3 Precision @ Document Cut-Off Levels

Based on the precision at document cut-off levels, it is possible to investigate
the ability of a system to retrieve relevant document at the top of the ranking.
This is plotted in Figure 3 for the four runs. The figure clearly shows that the
Annotation-based, PCA, and PCA-cross strategies, are performing better than
the Text-based strategy, which indicates that it is indeed useful to do XML-based
multimedia information retrieval.
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Another observation, which can be made based on Figure 3 is that the preci-
sion for the PCA-cross strategy exceeds that of the Annotation-based strategy,
especially after having seen the top 25 documents. Which is the first real in-
dication that PCA can be useful for multimedia information retrieval, if the
correlation of the results between the textual search and the image-based search
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is high enough. However, no hard conclusions can be drawn from this observation
and further research is necessary to investigate this behaviour.

4.4 Topic Analysis

The topic analysis presented in this section is used to gain more insight in the
behaviour of the different strategies over the individual topics. Figure 4 shows
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two box plots, the first plot presents the result per topic, based on the mean
average precision (MAP), while the second plot is used to examine the behaviour
of the strategies for the precision@25, which was marked as an interesting point
in the previous subsection, due to the performance of the PCA-cross run.

The results of Figure 4.a show that none of the strategies is capable to pro-
duce a (relevant) result for topics 12, 17, and 19. This is mainly caused, by
the strict and complex nature of the information need. Furthermore, the image
retrieval system is performing really poor on the retrieval of maps. According
to the system, all maps are equally (ir)relevant. A second observation with re-
spect to the Text-based run is that with a text-based search best performance
is achieved for topics 4 and 6, while for topics 2, 3, 10, and 13 text retrieval is
not sufficient.

Based on the MAP, the PCA strategy is never the best option, and comparison
of the Annotation-based strategy with the PCA-cross strategy show that the
PCA-strategy definitely benefits from the use of image annotations. The only
positive outlier is found for topic 2, where the PCA-cross strategy outperforms
the other strategies.

The results of Figure 4.b show the precision per topic after having seen the
top 25 documents of the ranking. At this point, the PCA-cross approach has the
best performance over all topics. This is mainly due to performance on topics
2, 4, 7, 10, and 13. Closer examination, reveals that the PCA module has a
positive influence on the performance for topics 2, 4, but this is contradicted
by the performance for topics 7, 10 and 13. In that case the performance of
the PCA-cross strategy seems to depend on the use of annotation-based search.
Interesting to see is that the PCA-cross strategy never performs less then the
Annotation-based strategy.

5 Conclusions

The increasing amount of multimedia content that is present on the (Semantic)
Web and in XML document collections demands for more sophisticated retrieval
techniques that enable multimedia information retrieval. In this article an XML-
driven approach for multimedia information retrieval is presented and evaluated,
which uses principal component analysis to derive a composite ranking for a set
of XML elements that have a multimedia character. The multimedia strategies
that implement the PCA module on top of the B3-SDR system allow for the
integration of image retrieval with the already present text retrieval modules.

PCA is a proven technique to reduce the dimensionality of a multi-variate
point set for various application domains, but has not yet been used in the
context of (XML-based) multimedia information retrieval. In this article it is
shown how PCA can be used to derive a composite ranking for multimedia
document fragments. Theory shows that PCA is especially useful if principal
components can be found that have large eigenvalues (λ > 1). Otherwise there
is a strong indication that the correlation between the variables, in this case the
textual and image-base ranking, is low.
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Various combinations have been tested to validate the ideas for XML-based
multimedia information retrieval, using PCA as the combining component. A
Text-based strategy has been used to function as a base-line against which is
measured if multimedia information retrieval can successfully be performed on
an XML document collection. The results are promising, however not that over-
whelming. Retrieval performance can be clearly improved with Annotation-based
strategy for image retrieval based on the captions of images. Using a plain PCA
strategy to combine text retrieval and content-based image retrieval did not lead
to better results, however when using the PCA-cross strategy performance did
improve, especially when compared to the Annotation-based strategy for the top
of the ranking (P@25).

A number of reasons can be identified which might explain the somewhat
disappointing results for the PCA-based approaches. One of which will probably
be the poor performance of the image retrieval system used. Current state of
the art in image retrieval does a better job on efficiently combining different
features [9], but also region detection and object recognition [3] in images will
definitely help to improve the image retrieval component. Another aspect, which
lays beyond the limitations of the system, is that the Lonelyplanet Worldguide
has a relatively small image collection. Increasing the size of the image collection
is also likely to lead to improved results.
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